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M-OSRP 2008 Introduction and Preface

This Annual Report describes the progress, status and plans of the Mission-Oriented Seismic Re-
search Program for the Fall 2008-Spring 2009 Academic Year. The Introduction provides a perspec-
tive and program overview that includes: (1) code release to sponsors and (2) technical highlights
from the projects within the program; and the latter technical highlights are detailed in individual
reports within this Annual Report.

Release of code: 3D inverse scattering free surface multiple elimination

The successful testing of the M-OSRP inverse scattering 3D free surface multiple elimination code
was carried out in conjunction with ConocoPhillips, and the release to sponsors is scheduled for
June, 2009. This code is a research prototype code, and it will be available to the M-OSRP HPC
committee, chaired by Nicola Bienati of ENI, working with the IBM team directed by Tom McClure
and Michael Perrone -for compute architecture comparisons and benchmark purposes.

We describe here the differential added-value of this particular algorithm and code, both within the
overall multiple removal toolbox, and relative to other free surface multiple removal codes available
from other sources and consortia.

The method is in principle able to eliminate free surface multiples given its prerequisites of: (1) the
source signature, (2) deghosted data and (3) the input data for the algorithm needs to include the
sub-events of the multiples to be eliminated – either through data acquisition or data reconstruction.
Independent synthetic data tests of e.g., P.M. Carvalho, Jingfeng Zhang and Bill Dragoset, indicate
that the inverse scattering series free surface multiple elimination code with its obliquity factor, and
using de-ghosted and wavelet removed data, precisely predicts and subtracts free surface multiples
of all orders, with equally effectiveness at all offsets, and without the need for adaptive subtraction.

The 3D free surface multiple removal method fits within our M-OSRP strategy that turns the
typical prediction and subtraction two-step sequence into a more competent prediction, and, in
practice, a reduced dependence and reliance on subtraction.

Absent of the source signature removal and deghosting, the method still provides multiple predictive
value and usefulness- but has diminished fidelity of amplitude and can suffer timing errors, as well.
The ConocoPhillips tests did not involve wavelet removal or deghosting. Adaptive subtraction
methods could be called upon to then adjust the amplitude and phase of the prediction to match
(and subtract) the multiple. In the case where the prerequisite wavelet and ghosts are not removed
the inclusion of the frequency and wave-number dependent obliquity factor in the M-OSRP inverse
scattering series algorithm provides important differential added predictive value of the multiple,
at all offsets, in comparison to free surface multiple elimination methods and codes available from
other consortia and vendors.

1



Introduction MOSRP08

In contrast with other traditional multiple removal methods, this algorithm requires no subsurface
information, no velocity model, nor assumptions on statistics of primaries and periodicity of mul-
tiples. The method and code are completely unchanged for any type of earth model, e.g., no line
of code changes for acoustic, elastic, anisotropic and anelastic earth models.

The method in principle predicts the amplitude and phase of the multiple, and allows for surgical
removal without damaging proximal or interfering primaries. In practice, the method could call
upon a mild and judicious use of an adaptive subtraction, to only deal with real data issues out-
side of its maximal physics and deterministic and inclusive predictive competence. The reduced
dependence on the adaptive subtraction step reduces the mischief and harm the adaptive can cause
with, e.g., proximal and destructively interfering events. The M-OSRP strategy is to maximize the
deterministic physics of prediction to increase the competence of the prediction so the difference
between prediction and subtraction is minimized, and thus reduce the burden on the adaptive step.
Reducing its burden reduces its opportunity for harmful and injurious effect. Interfering events do
not cause problems in the surgical amplitude and phase prediction of the underlying physics of the
inverse scattering free surface removal method. The latter positive quality can be compromised by
energy minimizing adaptive subtraction, which can fail at precisely the point where the underlying
physics of the inverse scattering free surface multiple elimination method has one of its greatest
strengths.

In contrast to the capability provided by other consortia, this free surface elimination algorithm
and code: (1) is equally effective at all offsets, and includes the obliquity factor; (2) multiples don’t
reappear in the stack, that seemed to be gone in the pre-stack domain, and (3) a Radon de-multiple
is not called upon for long offset residuals, with the potential to harm primaries. All orders of free
surface multiples are able to be eliminated by computing the appropriate number of terms in the
series, and that capability is part of this code delivery. The method demonstrates its mettle in
highly complex rapidly varying heterogeneous media.

Acknowledgements

The inverse scattering free surface de-multiple theory was pioneered, developed and tested in the
thesis of Paulo M. Carvalho, (of Petrobras while a student at UFBa, in Salvador, Brazil) and
documented in SEG and EAGE Abstracts and papers that followed. The 3D M-OSRP free surface
code was produced and documented by Sam Kaplan, as a special case of the 2D internal multiple
code also produced by Sam Kaplan for M-OSRP. Einar Otnes and Kris Innanen provided valuable
suggestions, insights and assistance.

The 3D synthetic data used for the test was arranged by Bill Dragoset for M-OSRP from a data
set owned by WesternGeco, Statoil-Hydro and Lawrence Livermore National Lab. We thank West-
ernGeco, Statoil-Hydro and Lawrence Livermore National Lab for permission to use their data.

The testing of the 3D free surface code at ConocoPhillips was managed and guided in technical
detail by Simon Shaw. Kris Innanen was the connection and technical link on the M-OSRP side
during the ConocoPhillips tests. Haiyan Zhang provided significant and extensive debugging and
test evaluation, and careful error location and analysis. Recently the M-OSRP intern Zhiqiang
Wang working with Haiyan, provided further debugging progress and contribution. Among others
at ConocoPhillips that contributed to the data management and testing are Paul Valasek and Doug
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Foster. Sam Kaplan kept a helpful eye on the code testing and was always available with useful
insights and invaluable suggestions.

M-OSRP thanks all mentioned in this acknowledgement for helping this high watermark of capa-
bility for free surface multiple removal to become available to our students and faculty and to our
sponsors.

Technical highlights

Depth imaging and AVO

In our direct depth imaging (without subsurface information) project we are pursuing a fundamental
new concept and capability to add to the seismic imaging toolbox. In our past, we researched and
developed capability for removing free surface and internal multiples as distinct subseries of the
inverse scattering series. Those developments were first examined and tested in simple acoustic
models before being extended and ultimately applied in their current model-type independent
forms. The M-OSRP fundamental research projects on depth imaging, target identification and
Q compensation each pass through the same stages that we went through in the earlier work on
multiples. At some point, we decide that the new formalism has passed tests with sufficient synthetic
data model realism to warrant a field data test. At this moment, we have not developed a model-
type independent inverse scattering series depth imaging algorithm. It is therefore reasonable to
ask what specific type of model test success would point to a test with field data.

In seismic exploration, we want a minimally complicated model adequate to achieve our predictive
purposes, but not too simple to be unrealistic, and misleading or harmful , nor too complicated
to be more than necessary to reach E & P goals. How to determine model adequacy? In our
view, a model is too simple if its output recommends drilling decisions that a more complicated
and complete model would improve upon, and is too complicated if a simpler model would not
change the efficacy of drilling prediction, e.g., changing a drill to no-drill or a no-drill to a drill
decision. Model adequacy depends on the exploration region, the data quality and type of play,
structural or stratigraphic, among other factors. Model-type independent processing algorithms
have a tremendous conceptual and practical advantage.

Among the basic assumptions behind all traditional and currently applied seismic depth imaging
methods are: (1) the ability to determine an adequate velocity model, and (2) that an imaging
algorithm is available to adequately back-propagate waves through that medium, where only the
velocity is changing. If the velocity configuration is achievable, and your goal is a structure map,
then thinking about (and then worrying about) additional subsurface properties such as e.g., density
is completely unnecessary and a more complicated model than needed for the goal of structure.
Although the structure determination only cares about velocity and only uses the phase in seismic
events for that purpose, the migrated images themselves are interpreted by their location, and
(at the very least) qualitatively interpreted using their amplitudes. The latter image location
and amplitude character cares about all properties of the seismic event and all of the properties
of the subsurface that the event has experienced. Furthermore, if your goal is reflector location
and inversion at depth , i.e., migration-inversion, then all overburden properties are relevant and
required.

3
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Since the goal of our M-OSRP imaging project was to use the inverse scattering series for locating
structure (without concern for the amplitude of the image) and without knowing any subsurface
properties it was reasonable to begin with an earth model that only allowed variation in velocity,
and that the velocity would be unknown, and never would be estimated or determined. In that
thinking, no other physical property other than velocity needs to be considered. Our inverse
scattering imaging subseries with different degrees of imaging capture and capability LOIS (Simon
Shaw, Bob Keys et al.), HOIS (Fang Liu et al.) followed that path and reasoning of developing and
testing direct depth imaging methods for an earth where the only variable and relevant unknown
property was assumed to be velocity. The thinking went as follows: “if having the velocity was
adequate to determine depth, then assuming you didn’t know the velocity would be adequate for an
inverse scattering series method to directly determine structure without subsurface information”.
If velocity was all you needed to know, not knowing the velocity was all you needed to assume that
you didn’t need to know.

The announced plan a year ago was to test Fang Liu’s HOIS algorithm on 3D marine data. At that
time, there were two initiatives: one was with Xu Li seen as inheriting the mantle of Haiyan Zhang
to further progress and develop methods for non-linear direct target identification, and a second
with Shansong Jiang , was to provide a second generation of field data capability to 3D imaging,
where both velocity and density could vary.

However, following discussions with Michael Richardson of BHP and Scott Morton of Hess, and
others, about the prevalence of rapid variations in density, and density and velocity in the sub-
surface, and following subsequent HOIS tests with models where both the velocity and density
varied, caused a change in plans. In that process it became clear that in contrast to the velocity
only need when you know the subsurface velocity configuration, the simplest realistic model for the
inverse scattering series to produce a structural subsurface map (on field data) without subsurface
information was a model that allowed both velocity and density to vary, and where both physical
quantities would not be known or determined or needed in principle and practice.

The initial steps represented by LOIS and HOIS to develop a structure map from the inverse
scattering series for a subsurface where only the velocity can vary still made sense, for the first
stage of testing an embryonic concept. However an added step of inverse scattering imaging theory
and algorithmic development and testing needed to take place where the earth can have rapid
and unknown variation in both velocity and density, before going forward with the first field data
tests. Why is the simplest model that the inverse scattering series requires for field data application
pointing to a model where both velocity and density can vary, and why is a model with velocity and
density both varying needed to only determine structure? Velocity and density both variable, for
structure- how can that make any sense? The reason goes back to the way the inverse scattering
series performs all of the tasks of seismic processing directly in terms of the data, and without
knowing or determining or requiring subsurface properties. The inverse scattering series is the
only method that performs all seismic processing tasks of multiple removal, depth imaging, non-
linear direct AVO, and Q compensation in the same way that free surface multiples are removed,
and with the same prerequisites, and the same single set of equations. Free surface multiples are
removed without knowledge, need, determination or estimation of any subsurface properties, by
using the amplitude and phase of events in multiplicative combinations, directly inputting data
with free surface multiples and outputting data without free surface multiples. If you imagine a
marine earth model where the velocity is homogeneous at water speed but the density has rapid
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variations, and that those rapid variations in density cause reflections, then those reflections play
no role in correcting the image with a water speed migration, which is perfect and not in need
of help. A model of the subsurface that assumes all variations are only due to velocity would
misinterpret all of the reflections in this last example as due to rapid velocity changes and would
incorrectly seek to correct the already correct water speed image. A generalization of the velocity
only imaging theories was extended to velocity and density varying media by Weglein in what is
called the “imaging conjecture”. The imaging conjecture uses the strength of a multi-parameter
inverse series to exclude density only variations from the multiplicative conversations of event
amplitudes and phases, towards a structure only map, while avoiding the new and daunting issues
of multi-parameter inverse of seeking several separate images, one for each parameter, with new
complications due, e.g., to linear inverse leakage, that don’t exist in the earlier one parameter
velocity only varying earth model and experience of LOIS and HOIS. A single collective image of a
reflectivity like quantity is output as part of the imaging conjecture. Jingfeng Zhang confirmed the
conjecture for the elastic case, and Shansong Jiang showed that the conjecture held to third order
in a multi-parameter acoustic earth. Initial synthetic tests of the conjecture were carried out with
distinct front end and imaging issues that need to be examined, tested and analyzed. That analysis
and testing are provided in this Annual Report in separate reports of Xu Li et al. and Shansong
Jiang et al.. The imaging conjecture has a multi-parameter front end that excludes density only
reflections, and outputs reflectivity, sitting on top of a Fang Liu type of HOIS imaging algorithm
engine. In the elastic world there is much to examine and progress: Xu Li will focus on front end
issues while Shansong Jiang deals with imaging.

An unexpected potential AVO opportunity and significant tool developed from the imaging con-
jecture, for automatic flat common image gathers of a reflectivity like output without the need for
ironing, and ironing away polarity reversals. We are following a good suggestion by Doug Foster
to examine this imaging conjecture output for type 1 and type 2 AVO targets and application.
Early tests of that possibility are encouraging and are presented in the two reports cited here by
Shansong Jiang and Xu Li. The plan is now for the imaging conjecture to be used for our first field
data imaging test, and we expect that test for this coming year.

On-shore project

M-OSRP’s mandate is to address pressing petroleum industry challenges in seismic exploration
and production. Those challenges occur in the marine and in the on-shore arenas and there are
some shared problems/issues and others which are unique to those distinct types of plays. The
daunting combination of technical and economic challenges in deep water sub-salt exploration has
caused a shift in the investment portfolios of the petroleum industry, towards an increased interest
in on-shore prospects and investment.

M-OSRP is responding to that shift by allocating resources to both our traditional marine and a
newer on-shore specific project. This Annual Report contains a report by Shih-Ying Hsu and a
note from Min Wang from the on-shore project. It is part of a campaign to address pressing issues
specific to on-shore exploration; and specifically to allow the added-value methods developed within
the group for removing multiples in a marine environment to be applied to on-shore exploration.

Among the key basic differences in on shore and offshore E & P activity is the nature of the medium
immediately at and beneath the source and receiver measurement surface. In the methods based
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on the inverse scattering series for removing multiples and processing primaries there is a a call
for a reference medium and a wavelet. The inverse scattering series overall has conditions on the
reference medium, conditions that are designed to keep the perturbation V, the difference between
the actual and reference medium, beneath the measurement surface. That condition translates
into the reference and actual medium agreeing above and on the measurement surface. Satisfying
that condition on the reference medium in the marine towed streamer case is not much of an issue,
but it is an issue for the on-shore and ocean bottom cases. In the Ken Matson thesis, he develops
the theory and evaluates inverse scattering series de-multiple methods for ocean bottom and on-
shore application. There is an assumption on the properties of the reference medium consistent
with the latter arguments, that places a stringent requirement on knowledge of the on shore near
measurement surface properties (or subsea floor properties) that one could imagine becoming a
practical obstacle for field data application. There is also a need for reference medium properties
in transforming multi-component data to P and S wave types. A report by Shih-Ying Hsu et al.
demonstrates that while the overall inverse scattering series has the above mentioned reference
medium condition, the internal multiple subseries is insensitive to the choice of reference property
for both acoustic and elastic media where the near surface is assumed to be homogeneous. Once
again, we find that certain task specific subseries have more favorable and forgiving attitudes and
less sensitivity than the overall inverse scattering series. That is an initial look and encouraging
note for on-shore application of the internal multiple algorithm. Min Wang is looking at applying a
Green’s theorem like approach to determining the source signature, for on-shore application, and has
written a note in this report describing the background, formulation and plan. In current on-shore
application of internal multiple algorithms there is a tremendous over-reliance and dependence of the
adaptive step due to the typical on shore data complexity. That great weight on the adaptive often
allows the interpreter to choose any event as an internal multiple, and to remove it. The on-shore
wavelet project seeks to increase the predictive competence of the prediction in the prediction and
subtraction sequence. There is a pressing need for deterministic improvement of internal multiple
prediction in the on-shore arena.

These activities, e.g., reference medium choice issues (under more complex near surface properties),
and limited data tests, and wavelet estimation, will progress within the on-shore project and are
interdependent, and will be first developed and/or examined separately and tested and then linked
for overall testing and evaluation.

Important advances and plans that support and/or enhance our de-multiple and
imaging efforts

In the M-OSRP program we have a portfolio of projects that manage risk, and deliver different
types of benefits from code delivery, on the one end, to synthetic data tests that exemplify progress
of fundamental new concepts, on the other end.

In developing a fundamental new seismic capability from thought-experiment and concept to field
data applications- there is a very long list of theoretical and practical issues to be concerned about
and address. If you look at them all at once you have little or no chance of addressing any one
issue let alone the entire collection. The strategy we adopt is to bring the new concept along
examining and then hopefully addressing different challenges in isolation and in order. Sometimes
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issues within the program are progressed in series and sometimes in parallel, and sometimes in
series and parallel. We describe briefly below a few of the initiatives and advances that support
and/or advance different aspects or issues of projects within the program.

Fang Liu developed a much more accurate water speed FK Stolt migration, due to including large
vertical wave numbers in the inverse Fourier transforms of the algorithm. This has resulted in
an improved velocity independent direct depth imaging algorithm, HOIS (higher order imaging
subseries). It was tested on a synthetic salt model, and showed improvement, especially in locating
the salt vertical wall, and mitigating the impact of diffractions. This is a significant and fundamental
computational mathematics breakthrough with implications for all methods both within M-OSRP,
and outside, that require and use a Fourier inverse transform to depth.

Zhiqiang Wang developed a fundamentally new migration method that is wave theoretic in line
and aperture compensated asymptotic cross line. It gives the data the wave theory imaging where
the data can support that method, and simultaneously provides an asymptotic migration that is
less complete and less data demanding, but anticipates and understands data limitations. The
use of an asymptotic aperture compensated migration was examined as the input for the inverse
scattering imaging series HOIS. Initial tests indicate an improvement for HOIS with a wave theory
migration front end, over asymptotic migration, for large aperture data, and the opposite judgment
for limited aperture data.

Adriana C. Ramirez and A. B. Weglein have written an invited tutorial for Geophysics on Green’s
theorem for seismic exploration and interferometry: “Green’s theorem as a comprehensive frame-
work for data reconstruction, regularization, wavefield separation, seismic interferometry and wavelet
estimation: A tutorial”. The purpose and scope of this document is to provide a tutorial on var-
ious Green’ s theorem derived methods in seismic exploration, with an emphasis on seismic data
reconstruction and its relationship to interferometry and discusses related subjects such as wavelet
estimation and wavefield separation. The tutorial provides a perspective of the interferometry field,
and uses Green’s theorem as both a platform to understand current capability and to develop im-
provements and new methods for data reconstruction. Examples that illustrate those comparisons
and improvements are presented.

There is a report within the Annual Report by Jim Mayhan that presents an overview plan to
code and test a 3D Greens theorem based deghosting, wavelet estimation and data reconstruction
all based upon and extending Jingfeng Zhang and Adriana C. Ramirez thesis research and testing
results in those areas. That will complement and enhance the code delivery described in the first
item of this introduction. Development and testing of these prerequisite and data reconstruction
codes will take place this summer.

Weglein et al. have written a paper providing a clearer and unambiguous meaning of linear inver-
sion. This paper and its incontrovertible but apparently radical message, provides both a platform
and guide to inversion theory, and reason for pause and careful scrutiny for many methods which
are indirect, model-matching and “full wave form”, but represent something less than an inverse
solution. Solving a forward problem in an inverse sense is not the same as solving an inverse prob-
lem. The direct inversion for target elastic properties is in principle not achievable with PP data.
There are important implications for our research projects within M-OSRP and for those pursuing
inversion methods in general.
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The anelastic inverse scattering project

In the anelastic inverse scattering series project two major advances took place: (1) the understand-
ing of how the inverse scattering internal multiple algorithm operates in an anelastic earth (Jose
Eduardo Lira et al.) and the subsequent use of that knowledge to estimate and remove the impact
of absorption experienced in the overburden on a given primary reflection and (2) Kris Innanen et
al. researched and provide a deeper understanding of the particular way that the amplitudes and
phases of events are used in an inverse scattering series method that inputs recorded data, that has
experienced a subsurface with absorption, and outputs data as though there was no absorption,
without knowing or determining or requiring the values of Q.

Jose Eduardo Lira et al. have provided a new way to enhance traditional migration-inversion, with
the promise of removal of the overburden transmission loss experienced by a primary, by using the
difference between a proximal internal multiple and its approximate amplitude predicted by the
inverse scattering internal multiple algorithm. He turns a deficit of the internal multiple attenuation
algorithm into an information bearing asset to enhance the traditional information extraction of
primaries.

This Introduction has presented an overview of projects and highlights that have progressed within
this past academic year. It was an exciting year with an important code delivery, and much new
directed fundamental science and some surprises, revised timetables for field data imaging tests as
unforeseen issues arose, and new imaging theory then responded, and a positive and unanticipated
potential AVO exploration product arrived before we expected that to happen. It was a good, and
busy and productive year. Thank you for your encouragement and support.

Best regards,
Art

Arthur B. Weglein
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A short note about elastic wavelet estimation

M. Wang and A. B. Weglein, M-OSRP, University of Houston

Abstract

In this short note, we present a review of the elastic wavelet estimation method which has
been developed by Weglein and Secrest (1990). A direct prediction of the wavelet for on-shore
application is offered which requires an surface integral over the measurement surface. We will
also discuss the boundary conditions for vibrators and explosives in land surveys and give a
future plan for testing this method.

1 Introduction

Wavelet estimation is one of the classic and central issues in seismic data processing. In order to
extract information about the subsurface from the reflection data recorded on the measurement
surface, it is important to identify and remove the effects of the source characteristics from the
reflected energy. Furthermore, inverse scattering subseries methods for removing multiples, imaging
and inverting primaries without knowledge of the subsurface, have placed a high-bar on the pre-
processing steps including the source signature estimation.

Recently, ConocoPhillips has successfully tested the inverse scattering 3D free surface multiple
elimination code. Given its prerequisites, the method is in principle able to eliminate free surface
multiple no matter what type of earth model it is, i.e., it can be used for acoustic, elastic, anisotropic
and anelastic earth models without changing any line of the code. Among these prerequisites, the
first one is the source signature/wavelet.

Unfortunately, the source wavelet is practically never known. We need to estimate or record it. To
obtain the wavelet, both statistical and deterministic (matching surface seismic to well-log data)
methods are generally used. In the marine case, common practice to date is to estimate wavelets
directly from the data by direct measurement with hydrophones. Weglein and Secrest (1990)
presented a method of calculating the wavelet by measuring the pressure and its normal derivative
along the cable, which is in principle exact and yet no information about the properties of the
earth is required. Osen et al. (1998) and Tan (1999) showed that the wavelet due to an isotropic
source can be determined from the pressure on the measurement surface and an extra hydrophone
between the measurement surface and the free surface. Recently, the simultaneous measurement of
the pressure and the vertical component of particle velocity (simply related to the normal derivative
of pressure in the space and temporal frequency domain) in a single towed streamer cable becomes
possible which means the wavelet estimation method proposed by Weglein and Secrest (1990) will
be the most direct one. Now, Jim Mayhan is trying to use this robust method to estimate acoustic
wavelet.

In offshore case, the reference medium is water and only compressional wave (P wave) can prop-
agate. In on-shore case, sources and receivers are located on or in an elastic medium where both
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compressional wave (P wave) and shear wave (S wave) can propagate inside. The recorded data are
far more complex and the nature of the near surface medium is always unknown. The difficulties
associated with noise, statics, resolution and the dynamic range of a seismic recording system also
make the construction of a seismic reflection profile far more complex than the marine case. In
this circumstance, accurate wavelet estimation becomes more important in order to distinguish the
primaries from the multiples. The current method for estimating the wavelet in offshore case, the
energy minimizing adaptive subtraction, is also applicable to the land case. The idea is that the
data contain less energy without the multiples than with them. Using this method, the wavelet
is then found which best removes the multiples from the data (Verschuur, 1991). The problem is,
when multiples interfere with primaries and weak internal multiples are proximal to weak primaries,
this energy minimization criterion tends to fail. In order to give a better prediction and reduce
the overburden of adaptive subtraction, M-OSRP has started two on-shore projects to apply the
relevant methods developed within the group for estimating wavelet and removing multiples in a
marine setting to the on-shore arena. The latter project is shown by Shih-Ying Hsu regarding the
reference velocity sensitivity for the elastic internal multiple attenuation algorithm. The former
one will be addressed in this note.

2 Elastic wavelet estimation method

Weglein and Secrest (1990) outlined the generalization of the elastic wavelet estimation method
which is similar as that in the acoustic case. They showed that a comparison of the Lippmann-
Schwinger equation and the Green’s theorem can be used to determine the elastic wavelet. In fact,
the Green’s theorem result for elastic waves has been given by Pao and Varatharajulu (1976). Next,
we will show the derivation given by them.

2.1 The Lippmann-Schwinger equation

For isotropic elastic solids with Lamé’s constants λ and µ, the equation of wave motion is

[(λ+ µ)∇∇ ·+µ∇2]~u(~x, ω) + ρω2~u(~x, ω) = −ρ~f(~x, ω) (1)

where ~u(~x, ω) is the displacement vector and ~f(~x, ω) is the body force per unit mass in the frequency
domain. ρ is the mass density and ω is the circular frequency.

Let the Green’s displacement tensor G be the response in a homogeneous medium, the equation of
motion is

[(λ+ µ)∇∇ ·+µ∇2]G(~x, ~x′, ω) + ρω2G(~x, ~x′, ω) = −δ(~x− ~x′)I (2)

where ~x and ~x′ are the positions of the observation point and the source point, I is the unit dyadic
and δ(~x− ~x′) is the three-dimensional delta function.

By inverting the operator
(λ+ µ)∇∇ ·+µ∇2 + ρω2 = G−1 (3)
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we have the operator relationship
ũ = ρf̃G (4)

or, equivalently, the L-S equation:

~u(~x, ω) =
∫ ∞

−∞
ρ~f(~x′, ω) ·G(~x, ~x′, ω)d~x′

=
∫ ∞

−∞
[ρ~fp(~x′, ω) +A(ω)δ(~x′ − ~xs)I] ·G(~x, ~x′, ω)d~x′

= A(ω)I ·G(~x, ~xs, ω) +
∫

V
ρ~fp(~x′, ω) ·G(~x, ~x′, ω)d~x′

(5)

where ~fp(~x, ω) are the passive sources (the scattering centers) of the scattered displacement field
originating from the inhomogeneities in the medium and the physical sources A(ω)δ(~x − ~xs)I are
outside the volume V. This Lippmann-Schwinger integral equation is valid for all the observation
points ~x.

2.2 The Green’s theorem

To derive the Green’s theorem for the isotropic elastic solids, a rank three Green’s stress tensor Σ
is defined as the following

Σ = λI∇ ·G+ µ(∇G+G∇) (6)

Physically, Σ represents the stress field at ~x generated by three mutually perpendicular concentrated
forces at ~x′. Then we can rewrite equation (2) as the following

∇ · Σ(~x, ~x′, ω) + ρω2G(~x, ~x′, ω) = −δ(~x− ~x′)I (7)

Similarly, a rank two stress tensor T (~x, ω) is related to the displacement vector ~u(~x, ω) by

T = λI∇ · ~u+ µ(∇~u+ ~u∇) (8)

And we can rewrite equation (1) as the following

∇ · T (~x, ω) + ρω2~u(~x, ω) = −ρ~f(~x, ω) (9)

Taking the scalar product of equation (7) on the left by ~u(~x, ω) and of equation (9) on the right by
G(~x, ~x′, ω), we have

~u · (∇ · Σ) + ~u · ρω2G = −~uδ(x− x′) (10)

(∇ · T ) ·G+ ρω2~u ·G = −ρ~f ·G (11)

Subtracting equation (10) from (11), we obtain

(∇ · T ) ·G− ~u · (∇ · Σ) = −ρ~f ·G+ ~uδ(x− x′) (12)
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Considering that we have

∇ · (T ·G) = (∇ · T ) ·G+ T : ∇G (13)

∇ · (~u · Σ) = ~u · (∇ · Σ) +∇~u : Σ (14)

and

[T : ∇G−∇~u : Σ]l = Tjk(∂jGkl)− (∂juk)Σjkl = 0 (15)

The left-hand side of equation (12) can be rewritten as

(∇ · T ) ·G− ~u · (∇ · Σ) = ∇ · (T ·G)−∇ · (~u · Σ) (16)

Then we can obtain

∇ · (T ·G− ~u · Σ) = −ρ~f ·G+ ~uδ(~x− ~x′) (17)

Integrating equation (17) over a region V which is bounded by the surface S and using the divergence
theorem to the left-hand side, we obtain the following result:∫

V
∇ · (T ·G− ~u · Σ)dV =

∮
S
(T ·G− ~u · Σ) · n̂′dS′

=
∮

S

{
~t(~x′) ·G(~x, ~x′)− ~u(~x′) ·

[
n̂′ · Σ(~x, ~x′)

]}
dS′

=
∫

V

[
−ρ~f(~x′) ·G(~x, ~x′)

]
dV +

∫
V
~u(~x′)δ(~x− ~x′)dV

=
∫

V
[−ρ~fp(~x′, ω)−A(ω)δ(~x′ − ~xs)I] ·G(~x, ~x′, ω)d~x′ +

∫
V
~u(~x′)δ(~x− ~x′)dV

=
∫

V

[
−ρ~fp(~x′) ·G(~x, ~x′)

]
dV +

∫
V
~u(~x′)δ(~x− ~x′)dV

(18)

where ~t is the traction at the surface which is related to the displacement tensor T by t = n̂′ ·T . We
still consider the body force ~f as two parts: (1) the physical sources outside the volume V which
make the integral equal zero; (2) the passive sources of the scattered displacement field inside the
volume. Then equation (18) can be rewritten as the following∮

S

{
t(~x′) ·G(~x, ~x′)− ~u(~x′) ·

[
n̂′ · Σ(~x, ~x′)

]}
dS′ +

∫
V

[
ρ~fp(x′) ·G(~x, ~x′)

]
dV

=
{
~u(~x), ~x in V
0, ~x not in V

(19)

When the observation point ~x is exactly on the boundary S, we can assume that this discontinuous
function is ~u(~x) within and on S and is zero outside S (Morse and Feshbach, 1953). This is to some
extent a matter of convention, though once we decide on the convention, we must be consistent
about it.
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Let umn(~x, ~x′) be the displacement at ~x in the n-axis direction due to a source at ~x′ in the m-axis
direction and Gmn be the mnth component of the Green’s displacement tensor. The source is
Am(ω)δ(~x− ~x′)I. Comparing equations (5) and (19), for ~x in the volume V , we can determine the
wavelet Am(ω) by dividing the surface term by Gmn as the following

Am(ω) =

{ ∮
S [t ·G− ~u · (n̂′ · Σ)] dS′

}
mn

Gmn

(20)

If we use the integral formula given by Morse & Feshbash (Morse and Feshbach, 1953), then

Am(ω) =
{
ρc2p

∮
S

[(
G · n̂′

) (
∇′ · ~u

)
−
(
∇′ ·G

) (
~u · n̂′

)]
dS′

− ρc2s

∮
S

[
G ·
(
n̂′ ×∇′ × ~u

)
+
(
∇′ ×G

)
·
(
n̂′ × ~u

)]
dS′
}

mn
/Gmn

(21)

where cp and cs are the reference values of the compressional velocity and shear velocity.

3 Discussion

In order to use equation (20) or equation (21) to determine the elastic wavelet, we need to measure
the following quantities: ~u · n̂′ and n̂′ × ~u are the normal components and tangential components
of the field at the surface, while ∇′ · ~u and n̂′ ×∇′ × ~u represent the pressure and tangential stress
at the surface, respectively.

For land surveys, there are two kinds of seismic sources: vibrators and explosives. The vibrators
are on the earth while the explosive charges are usually deployed in shot holes which are drilled
to depths ranging between ten to hundreds of feet. The seismic receivers (i.e., the geophones) are
always placed at near surface. If we define a volume V enclosed by the physical surface (i.e., the
land) and a hemisphere under the surface, then the vibrators and the geophones are just on the
boundary while the explosives such as dynamite are under the measurement surface and inside the
volume.

As numerically shown in the second section, the Green’s theorem needs the sources and receivers
to be inside and outside the volume, respectively. However, for vibrators, the physical sources
Am(ω)δ(~x− ~x′)I and the receivers are both on the boundary, not specifically inside or outside the
volume V , except that the sources are a little bit higher than the receivers. In the near future, we
plan to design some numerical tests where we assume the vibrators are “in” the air and extremely
close to the land and the receivers are under the physical boundary with a very small distance. We
will consider the continuity of the measurements and find out whether we can obtain an approximate
wavelet by this method.

For explosives, mathematically speaking, the physical sources Am(ω)δ(~x− ~x′)I (such as dynamite)
and the receivers are both inside the volume V , so the surface integral term in equation (19) will
be zero. Then we can not determine the wavelet Am(ω) by comparing the Lippmann-Schwinger
equation and the Green’s theorem any more. This is another open question we need to study in
future.
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4 Conclusion and future plan

In this short note, we have presented the elastic wavelet estimation method which has been pro-
posed by Weglein and Secrest (1990). By comparing the Lippmann-Schwinger equation and the
Green’s theorem, two final equations are derived to determine the elastic wavelet which require
an integral over the measurement surface. The normal components and tangential components of
the displacement, the pressure and the tangential stress at the surface need to be measured. To
use this method in practice, we need to pay attention to the boundary conditions in case that the
surface integral becomes zero. In the near future, we will design some numerical tests for vibrators
as described in the discussion section. We will also try to find a solution to determine the wavelet
of dynamites.
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Preprocessing 3D data

J. D. Mayhan and A. B. Weglein, M-OSRP, University of Houston

Abstract

In this report, we present a plan for designing, coding, and testing an application for prepro-
cessing 3D seismic data: source signature estimation, deghosting, and data extrapolation and
interpolation. We are targeting the code to be ready August 1, 2009.

1 Introduction

M-OSRP is generating code to accomplish three pre-processing goals based on Green’s theorem:
wavelet estimation, deghosting, and data reconstruction. These methods are critically important to
the success of the inverse scattering series methods, which has a higher bar for these requirements
than do traditional methods. Green’s theorem provides a wave theoretic approach to providing these
prerequisites that is consistent with the inverse scattering series methods they are meant to serve.
For reference, Figure 1 distinguishes events and their processing, whether involving the inverse
scattering series or Green’s theorem. This code development is especially timely because (1) M-
OSRP code to remove free surface multiples from 3D seismic data has been tested at ConocoPhillips
and will shortly be distributed, and this code would use the output of these pre-processing codes as
input, and (2) PGS is in the process of collecting 2D and 3D seismic data using their proprietary
GeoStreamer R© cable, which is designed to provide input data as expected by many Green’s theorem
applications.

The research project outlined in this report consists of developing code (in C) to estimate the source
signature from measured 3D data, deghost 3D data, and perform near offset data extrapolation.
The output of this code will be the input to the 3D free surface multiple removal code. This report
outlines the basic theory and plan to produce Green’s theorem based processing code for 3D. It
is organized as follows. The theory underpinning the code is discussed, with theoretical details
included in appendices. We then discuss the targeted timing of code delivery.

2 Green’s theorem and inverse scattering series processing chain

Each single algorithm or subseries operates on data; the output of that algorithm or subseries is
the input to the next algorithm or subseries. (1) Measured data is input to data interpolation,
whose output is the input to (2) source signature estimation, whose output is the input to (3)
deghosting, whose output is the input to (4) free surface multiple removal, whose output is the
input to (5) internal multiple removal, whose output is the input to (6)–(8) imaging, inversion, and
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Figure 1: Classification of marine events and how they are processed.

Q compensation. The success of any inverse scattering series task-separated algorithm hinges on
the success of all the steps done before it.

This paper involves a plan to code source signature estimation, deghosting, and data extrapolation
and interpolation as variants of the same Green’s theorem template. (Within extrapolation and
interpolation, another important issue is near offset extrapolation in various water depths.) The
application will be tested on 3D data (reflectivity data and/or data from ConocoPhillips).

3 Green’s theorem processing theory

3.1 Source signature estimation

This section outlines the theory to be used in the source signature estimation code. Weglein
and Secrest (1990) derive two equations containing the source signature: the Lippmann-Schwinger
equation and a second equation derived from Green’s theorem. Comparing the two equations gives
an equation for the source signature as a function of measured 3D data and a reference medium
Green function.

The Lippmann-Schwinger part begins with the constant density acoustic wave equation for the
pressure field P created by a source A(t) at position rs, restates wave speed c(r) as a function of
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reference medium speed c0 and a perturbation α(r), and converts the partial differential equation
into an integral equation (the Lippmann-Schwinger equation) involving a causal Green function (to
get a causal solution for P ). The result is

P̃ (r, rs, ω) = Ã(ω)G+
0 (r, rs, ω) +

∫
∞
dr′G+

0 (r, r′, ω)
ω2

c20
α(r′)P̃ (r′, rs, ω). (1)

The Green’s theorem part begins with (1) a reference medium consisting of a half space of air
overlaying a half space of water, (2) a perturbation α(r) which converts the lower part of the half
space of water into earth, (3) an integration volume V consisting of a hemisphere bounded from
above by the measurement surface, (4) a free surface (air-water interface) above the measurement
surface (i.e., outside V ), and (5) a source rs on or above the measurement surface (i.e., outside
V ). Substituting the above, the partial differential equation for the pressure field P , and the
corresponding reference medium Green function differential equation into Green’s theorem, and for
consistency with Eq. (1) choosing a causal Green function give

P̃ (r, rs, ω) =
∫
∞
dr′G+

0 (r′, r, ω)
ω2

c20
α(r′)P̃ (r′, rs, ω)

+
∮

S
n ds′ · [P̃ (r′, rs, ω)∇′G+

0 (r′, r, ω)−G+
0 (r′, r, ω)∇′P̃ (r′, rs, ω)]. (2)

Comparing Eqs. (1) and (2) gives an equation for the source signature:

Ã(ω) =
1

G+
0 (r, rs, ω)

∮
S
n ds′ · [P̃ (r′, rs, ω)∇′G+

0 (r′, r, ω)

−G+
0 (r′, r, ω)∇′P̃ (r′, rs, ω)]. (3)

Note that Eq. (3) is computing more than a traditional wavelet, i.e., instrument response is included.

The details of the above derivation can be found in Appendix A.

3.2 Deghosting

This section outlines the theory to be used in the deghosting code. The theory of deghosting based
on Green’s theorem is covered in Zhang (2007) (pp. 19–23). The procedure begins with (1) a
reference medium consisting of a whole space of water, (2) a perturbation αair(r′) which converts
the upper part of the whole space into air, (3) a perturbation αearth(r′) which converts the lower
part of the whole space into earth, (4) an integration volume V consisting of a hemisphere bounded
below by the measurement surface, (5) a free surface (air-water interface) above the measurement
surface (i.e., inside V ), and (6) a source rs on or above the measurement surface (i.e., inside V ).
Substituting the above into Green’s theorem and invoking the Sommerfeld radiation condition give
the receiver side deghosting equation:

P̃ deghosted(r, rs, ω) =
∫

MS
n ds · [P̃ (r′, rs, ω)∇′G+

0 (r′, r, ω)
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−G+
0 (r′, r, ω)∇′P̃ (r′, rs, ω)]. (4)

where P̃ deghosted(r, rs, ω) is the deghosted wavefield, and P̃ (r′; rs;ω) and ∇′P̃ (r′; rs;ω) are the hy-
drophone measurements and their spatial derivatives (in the frequency domain). Using reciprocity,
a similar integration on the source side will remove source ghosts.

In 2D Eq. (4) can be written in the form∮
S
n ds′ · [P̃ (r′, rs, ω)∇′G+

0 (r′, r, ω)−G+
0 (r′, r, ω)∇′P̃ (r′, rs, ω)]

= P̃ (r, rs, ω)−
∫

V
dr′G+

0 (r′, r, ω)k2
0αair(r′)P̃ (r′, rs, ω)

−Ã(ω)G+
0 (r, rs, ω). (5)

The physical meaning of Eq. (5) is that the total wavefield at r can be separated into three parts:
(1) the direct wave which travels from the source at rs to r (third term on the right hand side), (2)
the pressure field whose last motion is downward from the free surface (second term on the right
hand side), and (3) the pressure field whose last motion is upward from the earth (the entire right
hand side).

In practice, the derivative of the pressure is usually not measured. The procedure uses a “double
Dirichlet” Green function GDD

0 (r′, r, ω) which vanishes on the measurement surface as well as the
free surface to predicts the pressure and its vertical derivative on a “pseudo-measurement surface”
located between the free surface and the measurement surface using pressure measurements on the
cable plus the source signature. The predicted pressure and vertical derivative are then substituted
into Eq. (4).

The details of the above derivation can be found in Appendix B.

3.3 Interpolation

This section outlines the theory to be used in the data interpolation code. The theory of extrap-
olating near offset data in a towed streamer marine experiment is derived in Ramı́rez (2007) (pp.
64–69), where near offset means the data not collected between the source and the receiver (on each
towed streamer) nearest the source. The procedure begins with Green’s theorem, a causal reference
Green function, and the assumption that the velocity distributions for the pressure field and the
Green function are equal only within the integration volume V (and on its surface S). V is chosen
to be a right circular cylinder bounded above by the free surface and below by the measurement
surface. The radius of the cylinder is assumed to be at infinity. Further assuming that the source
and receiver are inside V gives an equation for data interpolation/extrapolation:

Ps(xa|xb;ω) =
∫

Sm
[P (x|xa;ω)∇G+

0 (x|xb;ω)− G+
0 (x|xb;ω)∇P (x|xa;ω)] · nds (6)

where
Ps(xa|xb;ω) is the scattered wavefield,
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G+
0 (x|xb;ω) is the causal reference Green function,

xa and xb are the locations of the source and receiver, respectively, and
the integration is performed over the measurement surface.

More on the above derivation can be found in Appendix C.

4 Results

The authors are targeting to have the application ready for testing GeoStreamer R© data beginning
August 1, 2009.
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Appendix A — Theory of source signature estimation

Weglein and Secrest (1990) derive two equations containing the source signature: the Lippmann-
Schwinger equation and a second equation derived from Green’s theorem. Comparing the two
equations gives an equation for the source signature as a function of measured 3D data and a
reference medium Green function.

Lippmann-Schwinger approach

The constant density acoustic wave equation for the pressure field P created by a source A(t) at
position rs is (

∇2 − 1
c2(r)

∂2

∂t2

)
P (r, rs, t) = A(t)δ(r− rs). (7)

Fourier transforming from the time domain to the frequency domain gives(
∇2 +

ω2

c2(r)

)
P̃ (r, rs, ω) = Ã(ω)δ(r− rs). (8)

Restating wave speed c(r) as a function of reference medium speed c0 and an actual medium
perturbation α(r) gives

1
c2(r)

=
1
c20

(1− α(r)). (9)

Substituting Eq. (9) into Eq. (8) gives(
∇2 +

ω2

c20

)
P̃ (r, rs, ω) = Ã(ω)δ(r− rs) +

ω2

c20
α(r)P̃ (r, rs, ω). (10)

Converting Eq. (10) from a partial differential equation into an integral equation (the Lippmann-
Schwinger equation) gives

P̃ (r, rs, ω) = Ã(ω)G0(r, rs, ω) +
∫
∞
dr′G0(r, r′, ω)

ω2

c20
α(r′)P̃ (r′, rs, ω). (11)
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Because the Lippmann-Schwinger equation covers all space, there is no boundary condition to
impose a causal solution; therefore choose a causal Green function G+

0 to get a causal solution
P̃ (r, rs, ω):

P̃ (r, rs, ω) = Ã(ω)G+
0 (r, rs, ω) +

∫
∞
dr′G+

0 (r, r′, ω)
ω2

c20
α(r′)P̃ (r′, rs, ω). (12)

Green’s theorem approach

Weglein and Secrest (1990) define the following to isolate the source signature: (1) a reference
medium consisting of a half space of air above a half space of water, (2) a perturbation α(r) which
converts the lower part of the half space of water into earth, (3) an integration volume V consisting
of a hemisphere bounded from above by the measurement surface (the plane z = 0), (4) a free
surface (air-water interface) above the measurement surface (i.e., outside V ), and (5) a source rs

on or above the measurement surface (again outside V ).

Substituting P̃ and G0 into Green’s theorem gives∫
V
dr′[P̃ (r′, rs, ω)∇′2G0(r′, r, ω)−G0(r′, r, ω)∇′2P̃ (r′, rs, ω)] =∮

S
n ds′ · [P̃ (r′, rs, ω)∇′G0(r′, r, ω)−G0(r′, r, ω)∇′P̃ (r′, rs, ω)], (13)

where V is the hemispheric volume defined above, and S is the hemisphere’s surface. Substituting
Eq. (10) and its corresponding reference medium Green function differential equation into Eq. (13)
gives ∮

S
n ds′ · [P̃ (r′, rs, ω)∇′G0(r′, r, ω)−G0(r′, r, ω)∇′P̃ (r′, rs, ω)]

=
∫

V
dr′[P̃ (r′, rs, ω) ∇′2G0(r′, r, ω)︸ ︷︷ ︸

(−ω2/c20)G0(r′,r,ω)+δ(r′−r)

−G0(r′, r, ω) ∇′2P̃ (r′, rs, ω)︸ ︷︷ ︸
(−ω2/c20)P̃ (r′,rs,ω)+ω2

c20
α(r′)P̃ (r′,rs,ω)+Ã(ω)δ(r′−rs)

]

=
∫

V
dr′[−ω

2

c20
G0(r′, r, ω)P̃ (r′, rs, ω)︸ ︷︷ ︸

cancel

+δ(r′ − r)P̃ (r′, rs, ω)

+
ω2

c20
P̃ (r′, rs, ω)G0(r′, r, ω)︸ ︷︷ ︸

cancel

−ω
2

c20
α(r′)P̃ (r′, rs, ω)G0(r′, r, ω)

−Ã(ω)δ(r′ − rs)G0(r′, r, ω)]

=
∫

V
dr′[P̃ (r′, rs, ω)δ(r′ − r)− ω2

c20
α(r′)P̃ (r′, rs, ω)G0(r′, r, ω)
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−Ã(ω)δ(r′ − rs)G0(r′, r, ω)]. (14)

Choosing r ∈ V gives∮
S
n ds′ · [P̃ (r′, rs, ω)∇′G0(r′, r, ω)−G0(r′, r, ω)∇′P̃ (r′, rs, ω)]

=
∫

V
dr′[P̃ (r′, rs, ω)δ(r′ − r)︸ ︷︷ ︸

P̃ (r,rs,ω)

−ω
2

c20
α(r′)P̃ (r′, rs, ω)G0(r′, r, ω)

−Ã(ω) δ(r′ − rs)︸ ︷︷ ︸
0

G0(r′, r, ω)]

= P̃ (r, rs, ω)−
∫

V
dr′

ω2

c20
α(r′)P̃ (r′, rs, ω)G0(r′, r, ω). (15)

If the support for α ∈ V , rearranging Eq. (15) gives

P̃ (r, rs, ω)

=
∫

V
dr′G0(r′, r, ω)

ω2

c20
α(r′)P̃ (r′, rs, ω)

+
∮

S
n ds′ · [P̃ (r′, rs, ω)∇′G0(r′, r, ω)−G0(r′, r, ω)∇′P̃ (r′, rs, ω)]

=
∫
∞
dr′G0(r′, r, ω)

ω2

c20
α(r′)P̃ (r′, rs, ω)

+
∮

S
n ds′ · [P̃ (r′, rs, ω)∇′G0(r′, r, ω)−G0(r′, r, ω)∇′P̃ (r′, rs, ω)]. (16)

In Eq. (16) the surface integral involves actual pressure measurements and their vertical derivatives.
Hence the surface integral will choose a causal solution. For consistency with Eq. (12) choose a
causal Green function which gives

P̃ (r, rs, ω) =
∫
∞
dr′G+

0 (r′, r, ω)
ω2

c20
α(r′)P̃ (r′, rs, ω)

+
∮

S
n ds′ · [P̃ (r′, rs, ω)∇′G+

0 (r′, r, ω)−G+
0 (r′, r, ω)∇′P̃ (r′, rs, ω)] (17)

Comparing approaches

Comparing Eqs. (12) and (17) gives an equation for the source signature:

Ã(ω) =
1

G+
0 (r, rs, ω)

∮
S
n ds′ · [P̃ (r′, rs, ω)∇′G+

0 (r′, r, ω)

−G+
0 (r′, r, ω)∇′P̃ (r′, rs, ω)]. (18)
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A few comments about Eq. (18): (1) Eq. (18) is one form of the ”triangle relation” relating the
pressure wavefield P̃ (r′, rs, ω), its vertical derivative ∇′P̃ (r′, rs, ω), and the source signature Ã(ω).
In this instance the first two variables are used to calculate the third. (2) The numerator and
denominator in Eq. (18) can be evaluated at any r ∈ V . (3) The source signature estimation code
will use the 3D form G+

0 (r, rs, ω) = exp (ikR)/R where k = ω/c0 and R = |r − rs| (Morse and
Feshbach, 1953, p. 810).

Appendix B — Theory of deghosting

The theory of Green’s theorem based deghosting is covered in Zhang (2007) (pp. 19–23).

The procedure defines the following to separate upward moving and downward moving waves: (1)
a reference medium consisting of a whole space of water, (2) a perturbation αair(r′) which converts
the upper part of the whole space into air, (3) a perturbation αearth(r′) which converts the lower
part of the whole space into earth, (4) an integration volume V consisting of a hemisphere bounded
from below by the measurement surface (the plane z = 0), (5) a free surface (air-water interface)
above the measurement surface (i.e., inside V ), and (6) a source rs on or above the measurement
surface (again inside V ). The procedure also defines the following: (7) a causal Green function
G+

0 (r′, r, ω) in the whole space reference medium, (8) k0 = ω/c0, (9) r ∈ V and on or below the
free surface, and (10) S as the hemisphere’s surface.

Substituting the above into Green’s theorem (Eq. (13)) gives∮
S
n ds′ · [P̃ (r′, rs, ω)∇′G+

0 (r′, r, ω)−G+
0 (r′, r, ω)∇′P̃ (r′, rs, ω)]

=
∫

V
dr′[P̃ (r′, rs, ω)δ(r′ − r)︸ ︷︷ ︸

P̃ (r,rs,ω)

−k2
0(αair(r′) + αearth(r′)︸ ︷︷ ︸

0

)P̃ (r′, rs, ω)G+
0 (r′, r, ω)

− Ã(ω)δ(r′ − rs)G+
0 (r′, r, ω)︸ ︷︷ ︸

Ã(ω)G+
0 (rs,r,ω)

]

= P̃ (r, rs, ω)−
∫

V
dr′k2

0αair(r′)P̃ (r′, rs, ω)G+
0 (r′, r, ω)

−Ã(ω)G+
0 (rs, r, ω)︸ ︷︷ ︸
G+

0 (r,rs,ω)

= P̃ (r, rs, ω)−
∫

V
dr′G+

0 (r′, r, ω)k2
0αair(r′)P̃ (r′, rs, ω)

−Ã(ω)G+
0 (r, rs, ω). (19)

The physical meaning of Eq. (19) is that the total wavefield at r can be separated into three parts:
(1) the direct wave which travels from the source at rs to r (third term on the right hand side), (2)
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the pressure field whose last motion is downward from the free surface (second term on the right
hand side), and (3) the pressure field whose last motion is upward from the earth (the entire right
hand side). Hence, Eq. (19) is the receiver side deghosting algorithm.

Letting the radius of the hemisphere go to ∞, the Sommerfeld radiation condition gives

P̃ deghosted(r, rs, ω) =
∫

MS
n ds · [P̃ (r′, rs, ω)∇′G+

0 (r′, r, ω)

−G+
0 (r′, r, ω)∇′P̃ (r′, rs, ω)], (20)

where P̃ (r′; rs;ω) and∇′P̃ (r′; rs;ω) are respectively the hydrophone measurements and their spatial
derivatives (in the frequency domain). Using reciprocity, a similar integration on the source side
will remove source ghosts.

In practice, the derivative of the pressure is usually not measured. The procedure predicts the
pressure and its vertical derivative on a ”pseudo-measurement surface” located between the free
surface and the measurement surface using pressure measurements on the cable plus the source
signature. The procedure includes a ”double Dirichlet” Green function GDD

0 (r′, r, ω) which vanishes
on the measurement surface as well as the free surface. GDD

0 (r′, r, ω) is a solution of

∇′ 2GDD
0 (r′, r, ω) + k2

0G
DD
0 (r′, r, ω) = δ(r′ − r) +

∞∑
n=1

aiδ(r′ − ri), (21)

where ai = ±1, and ri is the position of the ith mirror image of r as the wavefield reflects from the
earth and free surface. Substituting Eq. (21) into Green’s theorem (Eq. (13)) gives∮

S
n ds′ · [P̃ (r′, rs, ω)∇′GDD

0 (r′, r, ω)−GDD
0 (r′, r, ω)∇′P̃ (r′, rs, ω)]

=
∫

V
dr′[P̃ (r′, rs, ω)∇′ 2GDD

0 (r′, r, ω)−GDD
0 (r′, r, ω)∇′ 2P̃ (r′, rs, ω)]

=
∫

V
dr′[P̃ (r′, rs, ω)

− k2
0G

DD
0 (r′, r, ω)︸ ︷︷ ︸
cancel

+δ(r′ − r) +
∞∑

n=1

aiδ(r′ − ri)


−GDD

0 (r′, r, ω)

− k2
0P̃ (r′, rs, ω)︸ ︷︷ ︸

cancel

+A(ω)δ(r′ − rs) + k2
0(αair(r′) + αearth(r′))P̃ (r′, rs, ω)

]

=
∫

V
dr′P̃ (r′, rs, ω)δ(r′ − r) +

∫
V
dr′P̃ (r′, rs, ω)

∞∑
n=1

aiδ(r′ − ri)

−
∫

V
dr′GDD

0 (r′, r, ω)A(ω)δ(r′ − rs)

−
∫

V
dr′GDD

0 (r′, r, ω)k2
0αair(r′)P̃ (r′, rs, ω)

−
∫

V
dr′GDD

0 (r′, r, ω)k2
0αearth(r′)P̃ (r′, rs, ω). (22)
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Choosing V to be the space sandwiched between the free surface and measurement surface and
r ∈ V gives∫

MS
n ds′ · [P̃ (r′, rs, ω)∇′GDD

0 (r′, r, ω)−GDD
0 (r′, r, ω)︸ ︷︷ ︸

=0

∇′P̃ (r′, rs, ω)]

=
∫

V
dr′P̃ (r′, rs, ω)δ(r′ − r)︸ ︷︷ ︸

=P̃ (r,rs,ω)

+
∫

V
dr′P̃ (r′, rs, ω)

∞∑
n=1

aiδ(r′ − ri)︸ ︷︷ ︸
=0

−
∫

V
dr′GDD

0 (r′, r, ω)A(ω)δ(r′ − rs)︸ ︷︷ ︸
=GDD

0 (rs,r,ω)A(ω)

−
∫

V
dr′GDD

0 (r′, r, ω)k2
0 αair(r′)︸ ︷︷ ︸

=0

P̃ (r′, rs, ω)−
∫

V
dr′GDD

0 (r′, r, ω)k2
0 αearth(r′)︸ ︷︷ ︸

=0

P̃ (r′, rs, ω)

= P̃ (r, rs, ω)−GDD
0 (rs, r, ω)A(ω).

Hence

P̃ (r, rs, ω) = A(ω)GDD
0 (rs, r, ω) +

∫
MS

n ds′ · P̃ (r′, rs, ω)∇′GDD
0 (r′, r, ω). (23)

Taking the derivative of Eq. (23) gives
∂

∂z
P̃ (r, rs, ω) = A(ω)

∂

∂z
GDD

0 (rs, r, ω) +
∫

MS
n ds′ · P̃ (r′, rs, ω)∇′ ∂

∂z
GDD

0 (r′, r, ω). (24)

The procedure predicts the pressure and its vertical derivative on the pseudo measurement sur-
face using Eqs. (23) and (24), respectively, and performs receiver side deghosting on the pseudo-
measurement surface using Eq. (20) (Zhang and Weglein, 2005, p. 2).

After receiver side deghosting, using reciprocity the procedure predicts the pressure and its vertical
derivative on the source side using

P̃ (r, rs, ω) =
∫

MS
n ds′ · P̃ (r′, rs, ω)∇′GDD

0 (r′, r, ω), (25)

∂

∂z
P̃ (r, rs, ω) =

∫
MS

n ds′ · P̃ (r′, rs, ω)∇′ ∂

∂z
GDD

0 (r′, r, ω). (26)

which are the same as Eqs. (23) and (24) with their first right hand side terms omitted. When
the receivers are below the source, all field components (the direct wave, the downward moving
pressure field reflected from the free surface, and the deghosted pressure field) are ∈ V . However,
when the receiver is above the sources, only two components (the downward moving pressure field
reflected from the free surface and the deghosted pressure field) are ∈ V ; the direct wave is /∈ V .

After predicting the pressure and its vertical derivative using Eqs. (25) and (26), the procedure
performs source side deghosting on the pseudo-measurement surface using Eq. (20).

When coding the above, the authors will use the forms G+
0 (r, rs, ω) = exp (ikR)/R where k = ω/c0

and R = |r − rs| (Morse and Feshbach, 1953, p. 810), and GDD
0 (r, rs, ω) = exp (ikR+)/R+ −

exp (ikR−)/R− where k = ω/c0 and R± =
√

(x− xs)2 + (y − ys)2 + (z ∓ zs)2.

25



Preprocessing 3D data MOSRP08

Appendix C — Theory of data interpolation

Numeric simulations showing the importance of near offset data extrapolation in accurately esti-
mating the source signature are shown in Zhang (2007) (pp. 19–23).

The theory of extrapolating near offset data in a towed streamer marine experiment is derived in
Ramı́rez (2007) (pp. 64–69), where near offset means the data not collected between the source
and the receiver (on each towed streamer) nearest the source. The procedure begins with Green’s
theorem ∫

V
[P (x|xa;ω)δ(x− xb)−G+(x|xb;ω)A(ω)δ(x− xa) dx

=
∮

S
[P (x|xa;ω)∇G+(x|xb;ω)−G+(x|xb;ω)∇P (x|xa;ω)] · nds (27)

where
P (x|xa;ω) is the pressure wavefield,
G+(x|xb;ω) is a causal Green function,
A(ω)δ(x− xa) is an impulsive source at xa) with signature A(ω), and
xb is the location of the receiver.

Assuming that the velocity distributions for the pressure field and the Green function are equal
only within the integration volume V (and on its surface S) gives the following:
if xa,xb ∈ V , then left hand side of (27) = P (xb|xa;ω)−A(ω)G+(xa|xb;ω), else
if xb ∈ V , then left hand side of (27) = P (xb|xa;ω), else
if xa ∈ V , then left hand side of (27) = −A(ω)G+(xa|xb;ω).

Choosing the first case and noting that the left hand side is the total wavefield minus the direct
wavefield, which is the scattered wavefield, gives the data interpolation/extrapolation equation:

Ps(xa|xb;ω) =
∫

Sm
[P (x|xa;ω)∇G+

0 (x|xb;ω)− G+
0 (x|xb;ω)∇P (x|xa;ω)] · nds (28)

where
Ps(xa|xb;ω) is the scattered wavefield,
G+

0 (x|xb;ω) is the causal reference Green function,
xa and xb are the locations of the source and receiver, respectively, and
the integral is performed over the measurement surface.

Appendix D — Theory of free surface multiple elimination

The theory of free surface multiple elimination is derived in Carvalho (1992). This derivation has
been included because the first author needs to understand the free surface multiple elimination
code currently being tested by ConocoPhillips.

If a given term in the forward scattering series creates a certain type of data, that term in the
inverse scattering series removes that type of data, e.g., if there is no free surface, there are no
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ghosts and free surface multiples in the data. Hence, G0 must be of the form Gd
0 +GFS

0 where GFS
0

acts to create and remove ghosts and free surface multiples.

Deghosting is accomplished by multiplying each inverse scattering series equation from the left and
right by G−1

0 then Gd
0; now the outer G0’s have been replaced by Gd

0 (but the inner G0’s are still
Gd

0 +GFS
0 ).

Gd
0V1G

d
0 = D (29)

Gd
0V2G

d
0 = −Gd

0V1G0V1G
d
0 (30)

Gd
0V3G

d
0 = −Gd

0V1G0V2G
d
0 −Gd

0V2G0V1G
d
0

−Gd
0V1G0V1G0V1G

d
0 (31)

...

Reasoning by analogy, the subseries for free surface multiple elimination is developed by replacing
the inner instances of G0 in the above equations with GFS

0 .

Gd
0V1G

d
0 = D′

1 (32)
Gd

0V2G
d
0 = −Gd

0V1G
FS
0 V1G

d
0 (33)

Gd
0V3G

d
0 = −Gd

0V1G
FS
0 V2G

d
0 −Gd

0V2G
FS
0 V1G

d
0

−Gd
0V1G

FS
0 V1G

FS
0 V1G

d
0 (34)

...

where D′
1 is deghosted data.

Rewrite Eq. (34) in the suggestive form

Gd
0V3G

d
0 = −Gd

0V1G
FS
0 V2G

d
0 −Gd

0V2G
FS
0 V1G

d
0

−Gd
0 V1G

FS
0 V1︸ ︷︷ ︸

=−V2

GFS
0 V1G

d
0

= −Gd
0V1G

FS
0 V2G

d
0−Gd

0V2G
FS
0 V1G

d
0︸ ︷︷ ︸

cancel

+Gd
0V2G

FS
0 V1G

d
0︸ ︷︷ ︸

cancel

= −Gd
0V1G

FS
0 V2G

d
0 (35)

⇒ Gd
0VnG

d
0 = −Gd

0V1G
FS
0 Vn−1G

d
0 (36)

⇒ D′ =
∞∑

n=1

D′
n =

∞∑
n=1

Gd
0VnG

d
0. (37)

Transform Eq. (36) into the (kg, ks, ω) domain:

D′(kg, ks, ω) =
∞∑

n=1

D′
n(kg, ks, ω), (38)

where D′
n(kg, ks, ω) =

1
iπρ0B(ω)

∫ ∞

−∞
dk q exp (iq(εg + εs))
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×D′
1(kg, k, ω)D′

n−1(k, ks, ω) (39)

for n = 2, 3, 4, . . . Eqs. (39) and (38) are used in Sam Kaplan’s 2D free surface multiple elimination
code.

The procedure (Carvalho, 1992, pp. 12–14, 29–30) derives Eq. (39) from Eq. (29) and a causal
Green function (Eq. (42) derived below). The procedure defines the following in 2D: B(ω) as
the source signature, c0 =

√
κ0/ρ0 as the speed of sound in the reference medium (water), k =√

k2
x + k2

z , kg, ks, and kx as the Fourier conjugates of xg, xs, and x, respectively, kz = −(qg + qs),

κ0 as the bulk modulus of water, q = sgn(ω)
√

(ω/c0)2 − k2
x, qg = sgn(ω)

√
(ω/c0)2 − k2

g , qs =

sgn(ω)
√

(ω/c0)2 − k2
s , ρ0 as the density of water, (x, z) as a point in 2D space, (xg, εg) as the line

receiver location, and (x′, z′) = (xs, εs) as the line source location.

Derivation of the Green function

The procedure chooses a reference medium consisting of a half space of water with a free surface
at z = 0. L0G0 = δ takes the form(

∇2 +
ω2

c20

)
G0(x, z, x′, z′;ω) = −ρ0δ(x− x′)[δ(z − z′)− δ(z + z′)]. (40)

δ(z − z′) models an impulsive source at depth z′, and δ(z + z′) models an impulsive source that
”looks like” it originates at height −z′ above the free surface because its pressure wave has reflected
off the free surface (method of images). Fourier transforming Eq. (40) with respect to x gives(

(−ikx)2 +
d2

dz2
+
ω2

c20

)
G0(kx, z, x

′, z′;ω)

=

 d2

dz2
+
ω2

c20
− k2

x︸ ︷︷ ︸
=q2

G0(kx, z, x
′, z′;ω)

= − ρ0√
2π

exp (−ikxx
′)[δ(z − z′)− δ(z + z′)]. (41)

The causal solution of Eq. (41) is

G+
0 (kx, z, x

′, z′;ω) =
ρ0√
2π

exp (−ikxx
′)

−2iq
(exp (iq|z − z′|)− exp (iq|z + z′|)) (42)

= − ρ0√
2π

exp (−ikxx
′)

2iq
exp (iq|z − z′|)︸ ︷︷ ︸

=Gd
0

+
ρ0√
2π

exp (−ikxx
′)

2iq
exp (iq|z + z′|)︸ ︷︷ ︸

=GFS
0

. (43)

(De Santo, 1992, Chapter 2), (Carvalho, 1992, (2.3) p. 12)
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Derivation of Eq. (39)

Letting D0(kg, ks, ω) = D(kg, ks, ω)/B(ω) gives

D0(kg, ks, ω) = Gd
0V1G

d
0

=
∫ ∞

−∞

∫ ∞

−∞
dx dz

ρ0√
2π

exp (−ikgx)
−2iqg

×(exp (iqg|z − εg|)− exp (iqg|z + εg|))V1(x, z, ω)

× ρ0√
2π

exp (iksx)
−2iqs

(exp (iqs|z − εs|)− exp (iqs|z + εs|))

=
ρ2
0

2π
1

(2i)2qgqs

∫ ∞

−∞

∫ ∞

−∞
dx dz

× exp (−ikgx)(exp (iqg(z − εg))− exp (iqg(z + εg)))V1(x, z, ω)
× exp (iksx)(exp (iqs(z − εs))− exp (iqs(z + εs)))

=
ρ2
0

2π
1

(2i)2qgqs

∫ ∞

−∞

∫ ∞

−∞
dx dz

× exp (−ikgx) exp (iqgz)(exp (−iqgεg)− exp (iqgεg)︸ ︷︷ ︸
=−2i sin (qgεg)

)V1(x, z, ω)

× exp (iksx) exp (iqsz)(exp (−iqsεs)− exp (iqsεs)︸ ︷︷ ︸
=−2i sin (qsεs)

)

=
ρ2
0

2π
sin (qgεg) sin (qsεs)

qgqs

∫ ∞

−∞

∫ ∞

−∞
dx dz

× exp (−ikgx) exp (iqgz)V1(x, z, ω) exp (iksx) exp (iqsz). (44)

(Carvalho, 1992, (2.5) p. 12 and (2.6) p. 13)

Now we need V1.

V = L0 − L = ∇ · 1
ρ0
∇+

ω2

κ0
−∇ · 1

ρ(r)
∇− ω2

κ(r)

= ∇ ·
(

1
ρ0
− 1
ρ(r)

)
∇+ ω2

(
1
κ0
− 1
κ(r)

)
= ∇ · β(r)

ρ0
∇+ ω2α(r)

κ0
(45)

(Carvalho, 1992, (1.6) p. 6)

Combining Eqs. (44) and (45) gives

D0(kg, ks, ω) =
ρ2
0

2π
sin (qgεg) sin (qsεs)

qgqs

∫ ∞

−∞

∫ ∞

−∞
dx dz

× exp (−ikgx) exp (iqgz)
(
∇ · β1(r)

ρ0
∇+ ω2α1(r)

κ0

)
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× exp (iksx) exp (iqsz)

=
ρ2
0

2π
sin (qgεg) sin (qsεs)

qgqs
(I1 + I2)

where I1 ≡
∫ ∞

−∞

∫ ∞

−∞
dx dz exp (−ikgx) exp (iqgz)ω2α1(r)

κ0

× exp (iksx) exp (iqsz) (46)

and I2 ≡
∫ ∞

−∞

∫ ∞

−∞
dx dz exp (−ikgx) exp (iqgz)∇ · β1(r)

ρ0
∇

× exp (iksx) exp (iqsz). (47)

Rewriting Eq. (47) gives

I2 =
∫ ∞

−∞

∫ ∞

−∞
dx dz∇ ·

[
exp (−ikgx) exp (iqgz)

β1(r)
ρ0

× ∇(exp (iksx) exp (iqsz))]

−
∫ ∞

−∞

∫ ∞

−∞
dx dz

β1(r)
ρ0

∇(exp (iksx) exp (iqsz))

·∇(exp (−ikgx) exp (iqgz)). (48)

(Jackson, 1999, inside front cover, 7th Vector Formula)

The first integral in Eq. (48) vanishes (use the divergence theorem, then the expression inside the
square brackets vanishes at ∞ by causality). The second integral in Eq. (48) gives

I2 = −
∫ ∞

−∞

∫ ∞

−∞
dx dz

β1(r)
ρ0

(iksx̂+ iqsẑ)(exp (iksx) exp (iqsz))

·(−ikgx̂+ iqg ẑ)(exp (−ikgx) exp (iqgz))

= −
∫ ∞

−∞

∫ ∞

−∞
dx dz

β1(r)
ρ0

(kskg − qsqg)

× exp (iksx) exp (iqsz) exp (−ikgx) exp (iqgz). (49)

Substituting Eqs. (46) and (49) into Eq. (44) gives

D0(kg, ks, ω) =
ρ2
0

2π
sin (qgεg) sin (qsεs)

qgqs

∫ ∞

−∞

∫ ∞

−∞
dx dz

exp (−i(kg − ks)x) exp (−i(−qg − qs)z)

×
[
ω2α1(x, z)

κ0
+ (qgqs − kgks)

β1(x, z)
ρ0

]
. (50)

Performing the Fourier transforms gives

D0(kg, ks, ω) =
ρ2
0

2π
sin (qgεg) sin (qsεs)

qgqs

[
ω2

˜̃α1(kg − ks,−qg − qs)
κ0
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+ (qgqs − kgks)
˜̃
β1(kg − ks,−qg − qs)

ρ0

]
. (51)

where [. . .] = V1(kg, ks, ω). Therefore

V1(kg, ks, ω) =
2π
ρ2
0

qgqs
sin (qgεg) sin (qsεs)

D0(kg, ks, ω)

=
2π
ρ2
0

(2i)2qgqsD0(kg, ks, ω)
(exp (iqgεg)− exp (−iqgεg))(exp (iqsεs)− exp (−iqsεs))

=
2π
ρ2
0

−4qgqs exp (iqgεg) exp (iqsεs)
(exp (2iqgεg)− 1)(exp (2iqsεs)− 1)

D0(kg, ks, ω)︸ ︷︷ ︸
=D(kg ,ks,ω)/B(ω)

= 2π
−4
B(ω)

qgqs
ρ2
0

exp (iqgεg) exp (iqsεs)

× D(kg, ks, ω)
(exp (2iqgεg)− 1)(exp (2iqsεs)− 1)︸ ︷︷ ︸

=D′
1(kg ,ks,ω)

(52)

Using Eq. (43) to transform Eq. (36) into the (kg, ks, ω) domain gives

Vn(kg, ks, ω) =
1
2π

∫ ∞

−∞
dk

ρ0

−2iq
V1(kg, k, ω)Vn−1(k, ks, ω) (53)

Substituting Eq. (52) into Eq. (53) (for all terms except the first) give the desired result

Vn(kg, ks, ω) =
1
2π

ρ0

−2i

∫ ∞

−∞

dk

q

× 2π
−4
B(ω)

qgq

ρ2
0

exp (iqgεg) exp (iqεs)︸ ︷︷ ︸
drop

D′
1(kg, k, ω)

× 2π
−4
B(ω)

qqs
ρ2
0

exp (iqεg) exp (iqsεs)︸ ︷︷ ︸
modify

D′
n−1(k, ks, ω)

=
1
2π

ρ0

−2i

∫ ∞

−∞

dk

q
D′

1(kg, k, ω)

×2π
−4
B(ω)

q2

ρ2
0

exp (iqεg) exp (iqεs)D′
n−1(k, ks, ω)

= 2π
1

iπρ0B(ω)

∫ ∞

−∞
dk q exp (iq(εg + εs))

×D′
1(kg, k, ω)D′

n−1(k, ks, ω) (54)

which is the desired form to within a factor of 2π.
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An analytic example examining the reference velocity sensitivity
of the elastic internal multiple attenuation algorithm

S.-Y. Hsu, S. Jiang and A. B. Weglein, M-OSRP, University of Houston

Abstract

Internal multiple attenuation is a pre-processing step for seismic imaging and amplitude analysis.
Hsu and Weglein (2007) showed that the internal multiple algorithm from the inverse scattering
series is independent of reference velocity for an 1D earth with acoustic background. In this
study, we followed the analysis of Nita and Weglein (2005) and used the elastic internal multiple
algorithm (Matson, 1997) to investigate velocity sensitivity for an 1D earth with elastic reference
medium. The result suggests that the algorithm is also independent of reference velocity for an
1D earth with elastic background.

1 Introduction

Seismic processing is used to estimate subsurface properties from the reflected wave-fields. The
seismic data are a set of reflected waves including primaries and multiples. Primaries are events
that have only one upward reflection before arriving at the receiver. Multiply reflected events
(multiples) are classified as free-surface or internal multiples depending on the location of their
downward reflections. Free-surface multiples have at least one downward reflection at the air-
water or air-land surface (free surface). Internal multiples have all downward reflections below the
measurement surface (Weglein et al., 1997; Weglein and Matson, 1998).

Methods for seismic imaging and amplitude analysis usually assume that the reflection data are
primaries-only. To accommodate this assumption, multiple removal/attenuation is a prerequisite
for seismic processing. Conventional methods successfully attenuate multiples by assuming simple
or known subsurface geology. However, in geologically complex areas those methods may become
inadequate (Otnes et al., 2004). To overcome the limitations of conventional methods, the inverse
scattering series (ISS) methods were proposed to perform multiple removal/suppression for acoustic
data without subsurface information or assumptions (Carvalho, 1992; Araújo, 1994; Weglein et al.,
1997). Following this framework, Matson (1997) extended the multiple attenuation algorithm from
acoustic to elastic.

In order to keep the perturbation below the measurement surface, the ISS multiple removal/attenuation
methods usually require a known source wavelet and information about the near surface (Matson,
1997). To obtain the source wavelet, Wang and Weglein (2008) has shown how Green’s theorem is
used to fulfill the requirement. The need of the near surface properties is a practical obstacle for on-
shore/ocean bottom application. Here, we present an analytic example to show the inner workings
of the elastic internal multiple algorithm. In particular, we demonstrate how this scattering-based
algorithm can predict exact arrival times without the above assumption being true.
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2 Theory

We start with the forward scattering series derived from the Lippmann-Schwinger equation

G = G0 +G0V G, (1)

which can be expanded in a forward series

G = G0 +G0V G0 +G0V G0V G0 + · · · , (2)

where G and G0 are the actual and reference Green’s functions. The perturbation V can be written
as V =

∑
n Vn where Vn is n-th order in the data.

Define D = G−G0 as the measurement of the scattered field. Substituting into the forward series
gives the inverse scattering series in terms of data

D = G0V1G0,

0 = G0V2G0 +G0V1G0V1G0,

0 = G0V3G0 +G0V2G0V1G0 +G0V1G0V2G0 +G0V1G0V1G0V1G0,

....

(3)

The term G0V1G0V1G0V1G0 is the first term in the inverse series of first order internal multiples.

Following the method developed by Weglein et al. (1997) and Araújo (1994), the equation for first
order internal multiples in 2-D acoustic data is

b3IM (kg, ks, qg + qs) =
1

(2π)2

∫ ∞

−∞
dk1e

−iq1(zg−zs)

∫ ∞

−∞
dk2e

iq2(zg−zs)

×
∫ ∞

−∞
dz′1b1(kg, k1, z

′
1)e

i(qg+q1)z′1

×
∫ z′1−ε

−∞
dz′2b1(k1, k2, z

′
2)e

−i(q1+q2)z′2

×
∫ ∞

z′2+ε
dz′3b1(k2, ks, z

′
3)e

i(q2+qs)z′3

(4)

The parameter ε > 0 ensures z′1 > z′2 and z′3 > z′2 which satisfy the geometric relationship between
reflections of internal multiples (lower-higher-lower). b1 is defined in terms of the original pre-stack
data without free surface multiples. The data can be written as

D(kg, ks, ω) = (−2iqs)−1b1(kg, ks, qg + qs), (5)

where b1(kg, ks, qg + qs) represents the data result from a single-frequency incident plane wave.
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The adapted elastic version of (4) given by Matson (1997) is

B3IM
ij (kg, ks, q

i
g + qj

s) =
1

(2π)2

∫ ∞

−∞
dk3e

−iql
1(zg−zs)

∫ ∞

−∞
dk2e

iqm
2 (zg−zs)

×
∫ ∞

−∞
dz′1Bil(kg, k1, z

′
1)e

i(qi
g+ql

1)z′1

×
∫ z′1−ε

−∞
dz′2Blm(k1, k2, z

′
2)e

−i(ql
1+qm

2 )z′2

×
∫ ∞

z′2+ε
dz′3Bmj(k2, ks, z

′
3)e

i(qm
2 +qj

s)z′3

(6)

where qi
1 indicate P and S vertical wavenumbers for i = P and S, respectively.

Similarly, Bij is defined in terms of the original pre-stack data, that is

Dij(k1, k2, ω) = (−2iqj
2)
−1Bij(kg, ks, q

i
1 + qj

2). (7)

Hence,

DPP (k1, k2, ω) =(−2iqP
2 )−1BPP (kg, ks, q

P
1 + qP

2 ),

DPS(k1, k2, ω) =(−2iqS
2 )−1BPS(kg, ks, q

P
1 + qS

2 ),

DSP (k1, k2, ω) =(−2iqP
2 )−1BSP (kg, ks, q

S
1 + qP

2 ),

DSS(k1, k2, ω) =(−2iqS
2 )−1BSS(kg, ks, q

S
1 + qS

2 ).

(8)

One can see that if the converted waves do not exist, equation (6) becomes equation (4), which is
the first order internal multiple attenuator in acoustic form.

3 Attenuation of elastic internal multiples : a 1.5D example

We consider a layering model given by Nita and Weglein (2005) (see Figure 1). The velocity changes
across the interfaces located at z = za and z = zb where the velocities are c0, c1, and c2, respectively.
The sources and receivers are located at the measurement surface where the depth z = 0. The
reference vertical speeds are defined as

civ =
{
α0/cosθi, if i = P
β0/cosθi, if i = S

(9)

The reference horizontal speed is defined as

cih =
{
α0/sinθi, if i = P
β0/sinθi, if i = S

(10)

where α0 and β0 are P -wave and S-wave velocity in the reference medium, respectively.
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Figure 1: The model for the 1.5D example

Figure 2: The geometry of the first primary in the data

The horizontal wave numbers are

ki
s = ω/cih,

kj
g = ω/cjh.

(11)

For media with depth-dependent velocity, the horizontal slowness (sinθi/c(z) ≡ p) is constant along
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a ray path whether or not converted waves are present (Aki and Richards, 2002). Therefore,

ki
s = kj

g = ω/ch,

ki
s + kj

g = 2ω/ch.
(12)

The vertical wave numbers are

qi
s =


√

( ω
α0

)2 − k2
s , if i = P√

( ω
β0

)2 − k2
s , ifi = S

(13)

qj
g =


√

( ω
α0

)2 − k2
g , if j = P√

( ω
β0

)2 − k2
g , ifj = S

(14)

The total travel time for the n-th primary can be written as

Tn = τn + th, (15)

where τn and th are the vertical and horizontal travel times, respectively. The horizontal travel
time is defined as

th =
xg − xs

ch
=

2xh

ch
, (16)

and the vertical travel time corresponding to the n-th event is

τn =
zn
civ

+
zn

cjv
, (17)

where zn is the pseudo depths for the n-th event. Therefore,

ωτn = zn(
ω

civ
+
ω

cjv
)

= zn(qi
s + qj

g) = znk
ij
z ,

ωth = ω(
2xh

ch
) = khxh.

(18)

The data in the frequency ω domain can be written as

Dij(xh, 0;ω) =
1
2π

∫ ∞

−∞
dkh

∑
n

Rij
n eik

ij
z zn

2iqi
s

eikhxh . (19)

where kij
z = qi

s + qj
g, kh = kg + ks ,and xh = (xg − xs)/2.

Fourier transform over xg, xs,

Dij(kh, 0, ω) =
2π
2iqi

s

∑
n

Rij
n e

iznkij
z δ(kg − ks). (20)
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The data is

Bij(kh, 0, ω) = 2iqi
sDij(kh, 0, ω)

= 2π
∑

n

Rij
n e

ikij
z znδ(kg − ks).

(21)

Inverse Fourier transforming into the pseudo depth domain gives

Bij(kh, z, ω) = 2π
∑

n

Rij
n δ(z − zn)δ(kg − ks). (22)

Substituting equation (22) into equation (6), the integration over z3 gives∫ ∞

z′2+ε
dz′3e

ik′mj
z z′3Bmj(k′2, k

′
s, z

′
3) =2π

∫ ∞

z′2+ε
dz′3e

ik′mj
z z′3

∑
p

Rmj
p δ(z′3 − z′p)δ(k

′
2 − k′s)

=2π
∑

p

Rmj
p eik

′mj
z z′pH(z′p − (z′2 + ε))δ(k′2 − k′s)

The integration over z′2 is∫ z′1−ε

−∞
dz′2e

−ik′lmz z′2Blm(k′1, k
′
2, z

′
2)× 2π

∑
p

Rmj
p eik

′mj
z z′pH(z′p − (z′2 + ε))δ(k′2 − k′s)

= (2π)2
∫ z′1−ε

−∞
dz′2e

−ik′lmz z′2
∑

q

Rlm
q δ(z′2 − z′q)δ(k

′
1 − k′2)

∑
p

Rmj
p eik

′mj
z z′pH(z′p − (z′2 + ε))δ(k′2 − k′s)

= (2π)2
∑
p,q

Rmj
p Rlm

q eik
′mj
z z′pe−ik′lmz z′qH(z′p − (z′q + ε))H((z′1 − ε)− z′q)δ(k

′
2 − k′s)δ(k

′
1 − k′2)

The integration over z′1 is∫ ∞

−∞
dz′1e

ik′jl
z z′1Bjl(k′g, k

′
1, z

′
1)

×[(2π)2
∑
p,q

Rmj
p Rlm

q eik
′mj
z z′pe−ik′lmz z′qH(z′p − (z′q + ε))H((z′1 − ε)− z′q)δ(k

′
2 − k′s)δ(k

′
1 − k′2)]

=(2π)3
∫ ∞

−∞
dz′1e

ik′jl
z z′1
∑

r

Rjl
r δ(z

′
1 − z′r)δ(k

′
g − k′1)

∑
p,q

Rmj
p Rlm

q eik
′mj
z z′pe−ik′lmz z′q

×H(z′p − (z′q + ε))H((z′1 − ε)− z′q)δ(k
′
2 − k′s)δ(k

′
1 − k′2)

=(2π)3
∑
p,q,r

Rmj
p Rlm

q Rjl
r e

i(k′mj
z zp−k′lmz zq+k′jl

z zr)H(z′p − (z′q + ε))H(z′r − (z′q + ε))

×δ(k′2 − k′s)δ(k
′
1 − k′2)δ(k

′
g − k′1)

(23)

Note that the parameter ε > 0 ensures z′p > z′q and z′r > z′q which satisfy a lower-higher-lower
relationship between the pseudo depths.
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The result for B3IM
ij is

B3IM
ij (kh, z, ω) = 2π

∑
p,q,r

zp>zq
zr>zq

Rmj
p Rlm

q Rjl
r e

i(k′mj
z zp−k′lmz zq+k′jl

z z′r)δ(k′g − k′s) (24)

Inverse Fourier transforming over km and kh gives

B3IM
ij (k′h, k

′
z, ω) =

1
2π

∫
dk′h

∑
p,q,r

Rmj
p Rlm

q Rjl
r e

i(k′mj
z z′p−k′lmz z′q+k′jl

z z′r)eik
′
hxh . (25)

The predicted first internal multiple in the space domain is

IM1st
predicted =

1
2π

∫
dk′h

∑
p,q,r

Rmj
p Rlm

q Rjl
r e

i(k′mj
z z′p−k′lmz z′q+k′jl

z z′r)eik
′
hxh

2iqi
s

. (26)

Note that

M.S.

Figure 3: The geometry of pseudo depths

k′mj
z z′p = ωτ ′p,

k′lmz z′q = ωτ ′q,

k′jlz z
′
r = ωτ ′r,

k′hxh = ωt′h.

(27)

Therefore,

k′
mj
z z′p − k′

lm
z z′q + k′

jl
z z

′
r + k′hxh = ω(τ ′p − τ ′q + τ ′r + t′h) (28)
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The travel time for the predicted first order internal multiple is

τ ′p − τ ′q + τ ′r + t′h = (Tp − t′h)− (Tq − t′h) + (Tr − t′h) + t′h
= Tp − Tq + Tr

(29)

where Tp, Tq and Tr are travel times corresponding to the p-th, q-th, and r-th event, respectively.
The travel time for the actual first order internal multiple is

Ttotal = τp − τq + τr + th = (Tp − th)− (Tq − th) + (Tr − th) + th
= Tp − Tq + Tr.

(30)

The result Ttotal = Tp − Tq + Tr agrees with the actual arrival time for the first order internal
multiple.

One can see that reference velocity errors give incorrect vertical and horizontal travel times for each
event (see equation (16) and (17)). However, equation (29) shows that the errors due to wrong
reference velocities can be canceled, and the predicted arrival times remain correct.

To attenuate an internal multiple for a single frequency requires data at all frequencies. This
requirement comes from the integral over temporal frequency when transforming data from the
frequency domain to the pseudo-depth domain. The integral transformation is truncated with band-
limited data. The 1.5D example suggests that the algorithm is insensitive to reference velocities
and hence has potential for spectral extrapolation if we choose reasonable reference velocities.

4 Conclusion

In this paper, we have presented an elastic internal multiple attenuation algorithm (Matson, 1997)
following the analysis of Nita and Weglein (2005). Although the scattering-based methods usually
require known near surface properties, our study has suggested that the internal multiple attenu-
ation algorithm can tolerate errors in reference velocity for 1D earth. The capability of predicting
exact travel time without known reference velocities is useful for land application, where the near
surface properties are often complicated and ill-defined. Moreover, the freedom of choosing ref-
erence velocities has potential for the spectral extrapolation. The future direction of this study
includes extending the algorithm to multi-dimensional elastic case and extrapolation of band-limited
synthetic data.
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Correcting primary amplitudes for plane-wave transmission loss
using internal multiple attenuation I: an iterative procedure with
1D numerical examples

J. E. Lira, K. A. Innanen, A. C. Ramirez and A. B. Weglein, M-OSRP, University of Houston

Abstract

The objective of extracting the spatial location of a reflector, and its local angle-dependent re-
flection coefficient, from seismic data, depends on the ability to identify and to remove the effect
on primary amplitudes of propagation down to and back from the reflector. All conventional
methods that seek to correct for such transmission loss require estimates of the properties of the
overburden. In this paper we describe a new approach that will in principle permit correction
of primaries for such transmission loss without requiring overburden properties as input. The
approach is based on the amplitude of the first term of the inverse scattering series internal
multiple attenuation algorithm, which predicts the correct phase and approximate amplitude of
first order internal multiples. The amplitude is estimated to within a factor determined by plane
wave transmission loss down to and across the reflector producing the event’s shallowest down-
ward reflection. Hence, the amplitude difference between a given predicted and actual multiple,
both of which are directly available from the data and the algorithm output, in principle contain
all necessary information to correct specific primary reflections for their overburden transmis-
sion losses. Because of their strong influence on transmission loss absorptive overburdens/media
require particular focus. As a first step, previous amplitude analysis of the internal multiple
attenuation algorithm is here extended to include stratified absorptive media. Using this newly
derived relationship between predicted and actual internal multiples, and existing results for
acoustic elastic media, correction operators, to be applied to specific isolated primaries in both
types of media, are then computed using combinations of multiples and their respective predic-
tions. We illustrate the approach on synthetic data for the absorptive case with three Earth
models with different Q profiles. Further research into the amplitudes of the plane wave internal
multiple predictions in 2D and 3D media as a likely pre-requisite to field data application of
this concept-level algorithm.

1 Introduction

In this paper we continue to report on progress towards use of inverse scattering series internal
multiple attenuation to address an important issue in migration-inversion as it is carried out in
the industry today. Namely, the correction of primary amplitudes for transmission through an
unknown overburden, “laying bare” the reflection coefficient, and increasing the accuracy of, for
instance, parameter inversion at the associated interface.

A primary is a recorded seismic event whose history (see Figure 1) can be roughly subdivided into:
propagation down from the source through the overburden, reflection at a target, and propagation
back through the overburden up to the receiver:

Primary = [Transmission Down]× [Reflection]× [Transmission Up]. (1)
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Transmission
Down Transmission

Up

Reection

Primary

Figure 1: Sketch of a primary. Amplitudes are determined by the material property contrast at the point of
reflection, and propagation down and back through the overburden.

In exploration seismology primaries are the main seismic source of subsurface information, and are
used for structural mapping, parameter estimation, and, ultimately, petroleum delineation at the
target. Techniques of migration-inversion (Weglein and Stolt, 1999) accomplish these goals by first
generating maps of seismic reflectors at depth, typically positioning at these reflectors, reflection
coefficients as functions of angle, and, second, by using this behavior to determine local contrasts
in medium properties. Therefore, an important part of migration-inversion is the processing of
primary amplitudes, which are themselves essentially described by equation (1), to remove the
effects of transmission down to and back from the point of reflection, “laying bare” the reflection
coefficient information so that it may be used in parameter estimation. This removal as it is
conventionally accomplished requires an accurate estimate of all medium properties above the
target.

In this paper we describe an approach for the correction of primary amplitudes for transmission loss
through various types of overburdens, that avoids the requirement for prior characterization of over-
burden properties, thus aiding otherwise conventional migration-inversion methods. A corrective
operator is sought, derivable directly from the data, of the form

Corrective Operator = ([Transmission Down]× [Transmission Up])−1, (2)

which, when applied to a particular primary as modeled by equation (1), provides the reflection
coefficient information required by the inversion component of migration-inversion:

Corrected Primary = Primary× Corrective Operator = [Reflection]. (3)

The approach derives from the inverse scattering series internal multiple attenuation algorithm
(Araujo et al., 1994; Araújo, 1994; Weglein et al., 1997, 2003). Multiples are defined, herein,
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as events which have experienced at least one downward reflection. When at least one of these
downward reflections takes place at the free surface, the event is a free-surface multiple1, otherwise
the event is an internal multiple.

The order of a free-surface multiple refers to the number of downward reflections experienced by
the event at the free surface, and the order of an internal multiple refers to the number of downward
reflections experienced by the event anywhere in the subsurface (Weglein et al., 2003); e.g., first
order internal multiples have one downward reflection, etc. The inverse scattering series has the
ability to eliminate all multiples without a priori subsurface information (Weglein et al., 2003). The
inverse series algorithm for free-surface multiples eliminates a single order of free-surface multiples
with a single algorithm term (of the same order). In contrast, each order of internal multiples
requires a series for its removal. For instance, the internal multiple attenuation algorithm is a
series, whose first term predicts the correct time and approximate amplitude of all first order
internal multiples, and prepares the higher order multiples for attenuation by higher order terms
in the algorithm2.

The primary correction approach proposed here derives from the properties of the first term of the
internal multiple attenuation algorithm. The precise difference between the actual amplitude of an
internal multiple and the amplitude predicted by the first term of the algorithm, for plane wave data
in an acoustic medium (Weglein et al., 2003; Nita and Weglein, 2005), is a direct expression of plane
wave transmission losses down to and across the reflector where the multiple’s shallowest downward
reflection has taken place (Weglein and Matson, 1998; Weglein et al., 2003; Ramirez and Weglein,
2005b,a). This means that the amplitude difference between a given multiple and its prediction,
both of which are directly available from the data and the algorithm output, in principle contain all
the information necessary to correct specific primary reflections for their overburden transmission
losses3. The main goal of this study is to use this information to construct a corrective operator
essentially of the form described in equation (2). We will assume that wavelet estimation and
deconvolution, instrument response analysis, and de-ghosting have already been carried out, and
that the requisite data events have been identified and can be separately studied. The next chapter
deals with the case when this last assumption cannot be made.

The design of the operator depends on whether or not the overburden is absorptive. Hence, af-
ter briefly re-stating the properties of the internal multiple attenuation algorithm as studied for
acoustic/elastic media (Araujo et al., 1994; Araújo, 1994; Weglein et al., 1997, 2003; Ramirez and
Weglein, 2005b,a), we begin with the important preliminary step of deriving, for the first time,
expressions for the difference between the internal multiple attenuation algorithm prediction and

1This definition is contingent on prior removal of ghosts.
2Research has additionally progressed towards an elimination algorithm. Ramirez and Weglein (2005a); Ramirez

(2007) have provided a closed-form elimination algorithm for a subset of first-order internal multiples, which eliminates
internal multiples generated at the shallowest reflector in the earth and improves the attenuation of internal multiples
generated at deeper reflectors. Further aspects of the internal multiple attenuation algorithm have been reported in
the literature by (Carvalho et al., 1991; Matson, 1997; Weglein et al., 1997; Weglein and Matson, 1998; Kaplan et al.,
2005; Nita and Weglein, 2005; Weglein and Dragoset, 2005).

3The use of the discrepancy for correcting for overburden effects was first suggested by Dennis Corrigan following
discussions on the analytic example presented by A. Weglein at CWP and ARCO, later published by Weglein and
Matson (1998).
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the actual amplitude of the multiple event for a layered anelastic medium. This allows operators
appropriate for either medium type to be derived.

We next work with the formulas expressing the difference between actual and predicted multiples,
demonstrating that, when combined recursively, they may be used to produce correction operators
ready for multiplicative application (in the frequency domain) to specific primaries. The operators
are built only from the data and the output of the internal multiple algorithm (which itself has
required no overburden information). Different operators are made for the acoustic/elastic vs.
absorptive cases. Following this, weillustrate the procedure on synthetic data for the absorptive
case, examining the form and effect of the correction operators.

2 Review: amplitudes predicted by the multiple attenuation algorithm

The first term in the internal multiple attenuation algorithm acts non-linearly on reflection seismic
data to calculate the exact phase and approximate amplitude of all orders of internal multiples:

b3IM (kg, ks, qg + qs) =
1

(2π)2

∫ ∞

−∞
dk1e

−iq1(zg−zs)

∫ ∞

−∞
dk2e

iq2(zg−zs)

×
[∫ ∞

−∞
dz′1b1(kg, k1, z

′
1)e

i(qg+q1)z′1

×
∫ z′1−ε

−∞
dz′2b1(k1, k2, z

′
2)e

−i(q1+q2)z′2

×
∫ ∞

z′2+ε
dz′3b1(k2, ks, z

′
3)e

i(q2+qs)z′3

]
, (4)

where qg = sgn(ω)
√

( ω
c0

)2 − (kg)2, qs = sgn(ω)
√

( ω
c0

)2 − (ks)2, kg and ks are the horizontal wavenum-

bers conjugate to receiver and source coordinates (xg, xs), respectivelly, and ε is a small positive
quantity. The input for the internal multiple attenuation algorithm is b1, which is created from the
pre-stack reflection seismic data. It is constructed as follows: the surface recorded data, deghosted
and without free surface multiples, D(xg, xs, t), is Fourier transformed over all variables, to pro-
duce D(kg, ks, ω). A change of variables is made, to D(kg, ks, qg + qs), after which b1 is defined as
b1(kg, ks, qg + qs) = D(kg, ks, qg + qs)(2iqs); b1 is then inverse Fourier transformed over qg + qs to
pseudo-depth. The result, b1(kg, ks, z), is used as input in equation (4), and the output, b3IM , is
the predicted internal multiple data set, produced without knowledge of Earth material properties
or structure and it accommodating all Earth model types that satisfy the convolutional model
(Ramirez and Weglein, 2005b).

2.1 The relationship between the predicted and the actual multiple amplitude

Being the first term in a series that removes first order internal multiples without subsurface
information, the internal multiple attenuation algorithm provides the capability to predict the
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exact time of all first order internal multiples and it is the first term to predict the amplitudes of
the first order internal multiples. Weglein and Matson (1998) and Ramirez and Weglein (2005b)
examined the difference between the actual amplitudes of internal multiples and those of the internal
multiple attenuation algorithm predictions. The latter authors called the difference the amplitude
factor, and showed that it is related to the transmission coefficients down to and across the multiple
generator interface (Weglein and Matson, 1998; Ramirez and Weglein, 2005b). The difference can
be understood intuitively by considering the way the algorithm builds its prediction. Consider
Figure 2. On the left panel is an internal multiple and the primaries that are used in the algorithm

a

b

c
d

e

fg

h
layer 1

layer 2

primary 1 primary 2multiple and subevents

interface 1

interface 2

interface 3

i j

k

l

Figure 2: Schematic diagram of primaries and internal multiples in a stratified medium. Left panel: an
internal multiple and the primary subevents used to predict it. Middle and right panels: associated
primaries whose amplitudes may be corrected using the discrepancy between the amplitudes of the
predicted and actual multiple on the right.

to predict it. The generator is the interface 2. The multiple has the path abcdijkl. The algorithm
predicts the multiple by multiplying the amplitudes of the three primaries, adding the phases of
the deeper two, abcdef and ghijkl, and subtracting the phase of the shallower, ghef . The phase
of the actual multiple and the predicted multiple are therefore identical. However, the amplitude
of the actual multiple,

TabTbcRcd(−Rhe)RijTjkTkl,

and the multiplied amplitudes of the primaries in the prediction,

[TabTbcRcdTdeTef ]× [TghRheTef ]× [TghThiRijTjkTkl],

clearly differ in that the actual multiple does not experience the transmission history of the shallower
primary. That is, the terms Tde, Tef , Tgh, Thi in the prediction are extraneous. This includes
transmission across the generating interface (interface 2).

Let us next depart from schematics and consider the general accounting of this behavior for pre-
dicted multiples within an arbitrary stack of layers provided by Ramirez and Weglein (2005b).
Figure 3 shows a 1-D acoustic model consisting of three reflectors, the lower two of which have
associated reflection coefficients R1 and R2, and layer velocities c0, c1 and c2. The transmission
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Figure 3: Multilayered medium where the first layer, 0, is acoustic and the other two are anelastic. Three
events are displayed and they were used to generate the data-set for testing the correction of the
transmission losses of a primary in an absorptive medium. The parameters of the models are
shown in Table 1.

coefficient from layer i to layer j is Tij . For example, a multiple generated at interface 2 in Figure
3 has an amplitude

M1 = [T01T12R2(−R1)R2T21T10]. (5)

The predicted multiple amplitude is:

MPRED
1 = [T01T12R2(−R1)R2T21T10][(T01T10)2(T12T21)]. (6)

Comparing equations (5) and (6) one sees that their ratio, as expected, carries information about
the transmission coefficients down to and across the multiple generator interface. Ramirez and
Weglein (2005b) refer to this ratio as the amplitude factor AF:

AF2 =
MPRED

1

M1
= [T01T10]2[T12T21]. (7)

The index 2 anticipates our later use of this factor for corrective purposes, and signifies that
the second interface is the generator. With this terminology the amplitude factor expressing the
discrepancy between the predicted and actual amplitudes of an internal multiple generated at the
j’th interface in a stack of layers is

AF2 =
{
T01T10 for j=1;∏j−1

i=1 (T 2
i,i−1T

2
i−1,i)Tj,j−1Tj−1,j for 1 < j < J,

(8)

where J is the total number of interfaces in the model. Presently we will manipulate this factor to
become a correction operator for primary amplitudes.
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2.2 Extension of the amplitude analysis to absorptive media

Ramirez and Weglein (2005b) assume an acoustic medium, in which plane-wave transmission losses
are local, occurring at the point at which the wave crosses a contrast in material properties. For an
absorptive stack of layers, in which transmission loss occurs over the entire course of propagation,
an extension of their results is required. In later sections this minor theoretical alteration will be
shown to lead to an important practical difference when the predicted-actual amplitude discrepancy
is exploited.

In order to study the transmission coefficients in an anelastic medium we select an intrinsic attenu-
ation model to describe amplitude and phase alterations in a wave due to friction. These alterations
are modeled by a generalization of the wavefield phase velocity to a complex, frequency-dependent
quantity parameterized in terms of Q. A reasonably well-accepted Q model (Aki and Richards,
2002) alters the scalar propagation constant of the j’th layer, kj = ω/cj(z), to

kj =
ω

cj(z)

[
1 +

F (ω)
Qj(z)

]
, (9)

where F (ω) = i
2 −

1
π log (ω/ω0). The reference frequency ω0 may be considered a parameter to

be estimated, or assumed to be the largest frequency available to a given experiment. The model
divides propagation into three parts: a propagation component, an attenuation component, and a
dispersion component.

With this definition of kj , and assuming that in Figure 3 the two bottom layers are anelastic,
we again construct the prediction. It is convenient to re-define the transmission coefficient of a
given interface to incorporate absorptive amplitude loss within the layer above that interface. For
instance, the coefficients T12 and T21 of the previous section derived using the kj of equation 9,
become:

T12 =

 2c2
(
1 + F (ω)

Q2

)−1

c1

(
1 + F (ω)

Q1

)−1
+ c2

(
1 + F (ω)

Q2

)−1


attenuation component︷ ︸︸ ︷
e
− ω

2Q1c1
(z1−z0)

e
iω

πQ1c1
log( ω

ω0
)(z1−z0) (10)

T21 =

 2c1
(
1 + F (ω)

Q1

)−1

c2

(
1 + F (ω)

Q2

)−1
+ c1

(
1 + F (ω)

Q1

)−1

 e
− ω

2Q1c1
(z1−z0)︸ ︷︷ ︸

attenuation component

e
iω

πQ1c1
log( ω

ω0
)(z1−z0)

. (11)

We make particular note of the dependence (via the attenuation component) of this definition of
transmission coefficients on the thickness of the layer overlying the interface in question. With this
extension, the internal multiple attenuation can be expressed with essentially the same amplitude
factor, used in the elastic case. For instance, by analogy with equation (7):

AF2 = [T01T10]2T12T21. (12)

Provided that this re-definition of the absorptive transmission coefficients is adopted, the amplitude
factors and internal multiple attenuation error analysis for the general absorptive stack of layers at
normal incidence is given again by equation (8).
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3 Correction of primary amplitudes using internal multiples

We will make two comments about the amplitude error analysis above. First, the discrepancy
between the predicted and the actual multiple for a given generator is directly related to the trans-
mission losses experienced by a primary associated with that generator. Second, the discrepancy,
characterized by the amplitude factor AF, is available directly from the data and the output of the
internal multiple attenuation algorithm. In this section we use the information in the various AF
factors as a direct means to correct the amplitude of the primary associated with the generator for
transmission effects, in the sense put forward at the beginning of this chapter.

We define what will become the primary correction operator calling it PCO, to be built recursively
from the data-determined AFs:

PCOn ≡
PCOn−1

AFn
, (13)

with the terminating definition
PCO0 = 1. (14)

Expanding this operator over several orders n clarifies that it will indeed act as a correction oper-
ator when applied multiplicatively to a primary whose upward reflection has occurred at the n’th
interface (or near; see bellow).

The precise primary to be corrected with the n’th operator depends on whether the medium is
assumed to be absorptive or not. We next treat these cases in turn. It is useful to index primaries
from 0 upward. In the scheme in Figure 2, the 0’th primary reflects upward at interface 1.

3.1 Correction of primaries in acoustic/elastic media

Consider once again the multiple sketched in Figure 2, whose generator is interface 2. Setting
n = 2, expanding equation (13), and employing the alphabetical indices in the figure, the operator
expands into

PCO2 =
1

TghThiTdeTef
. (15)

If the medium is acoustic/elastic, for the primary depicted in the middle panel of Figure 2, the
“last” overburden effect on the event before the reflection at interface 3 is the transmission through
interface 2, and the “first” overburden effect on the event after the reflection is again transmission
through interface 2. Consequently, PCO2 is exactly appropriate as an operator to correct this
(middle panel of Figure 2) primary. More generally, in the acoustic/elastic case, the operator
PCOn in equation (13) corrects the n’th primary, leaving the n’th reflection coefficient “bare” and
suitable as input to other inverse procedures:

Rn = PCOn × Pn. (16)
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3.2 Correction of primaries in absorptive media

Next, suppose that the medium in Figure 2 is absorptive, and again consider PCO2. Recall that
the same form for the amplitude discrepancy between predicted and actual multiples is maintained
in absorptive media and so is this operator, PCO2, provided we alter the transmission coefficients
of a given interface to include absorptive propagation through the layer above that interface.

However, with this arrangement, PCO2 is evidently no longer appropriate as an operator to correct
primary 2, i.e., the primary depicted in the middle panel of Figure 2, because it does not account
for absorptive propagation through the layer between the reflection and the multiple generator.

To maintain the usefulness of the operator, we instead make an approximation. We assume that in
an absorptive medium, the effect of the local transmission coefficient at a boundary on the amplitude
of a primary is dwarfed by the effect of absorptive propagation. That is, the underbraced term
in equation 11 is more important to the amplitude of the event than the term in square brackets.
With that assumption we may simply change the primary being corrected by PCO2 to the one
depicted in the right panel of Figure 2. This statement is true to within the combined local
transmission coefficient down and up across interface 2. More generally, in the absorptive case, the
(now frequency-dependent) operator PCOn in equation (13) corrects the n− 1’th primary:

Rn−1(ω) = PCOn(ω)× Pn−1(ω). (17)

4 Synthetic examples

In this section, we illustrate with simple synthetic examples the steps necessary to correct a primary
for absorptive transmission losses, using a multiple and the internal multiple attenuation algorithm
prediction. We generate zero-offset traces from plane waves normally incident on three layered
models with the geometry of the model in Figure 2, assuming the waves behave in accordance with
the propagation constant in equation (9), and using the layer parameter values in Table 1. We
include the two primaries and the first order internal multiple. The traces are wavelet deconvolved,
and bandlimited (3–50 Hz). Figure 4 shows the traces generated for each model, which differ in
their Q values, ranging from relatively low attenuation to relatively high attenuation. The arrival
times of the two primaries and the multiple are approximately 1.5s, 2.3s and 2.9s, respectively.

Depth (m) c (m/s) Q1 Q2 Q3

000-500 1500 ∞ ∞ ∞
500-1422 2200 200 100 50
1422-2422 2800 100 50 25
2422-∞ 3300 50 25 10

Table 1. Absorptive Earth models.

With the knowledge that the medium is absorptive, and in accordance with the arguments in the
previous section, we use the predicted multiples to correct the amplitude of the shallower primary.
The prescription is:
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Figure 4: Data generated for the numerical tests comprised of two primaries and one multiple for all models
of Table 1: (A) The low absorptive Q-profile, (B) the intermediate Q-profile, and (C) the high
absorptive Q-profile.

1. Each trace is used as input to the internal multiple attenuation algorithm, generating predic-
tions of the internal multiples.

2. Each internal multiple and its prediction are isolated and their spectra calculated.

3. The reciprocal of the ratio between the spectra of each internal multiple and its prediction is
taken. By equation (13), this is the appropriate correction operator PCO.

4. The shallower primary is isolated, and the operator is applied to its spectrum.

We compare the result to an equivalent primary modeled in the absence of all effects of transmission
through the overburden. Figure 5 illustrates the uncorrected, shallower primary from each of the
three models. The multiple is predicted with the attenuation algorithm, the prediction and the
original multiple are isolated from the trace, and their spectra are computed (Figure 6). The
prediction evidently contains a greater level of attenuation then the actual multiple. This is in
agreement with the extra transmission paths involved in the prediction, as discussed above. The
frequency dependence of this discrepancy will form the basis for the correction of the shallower
primary. This is effectively a data-driven Q-compensation algorithm. Figure 7 illustrates the
spectra of the primary correction operators derived from these quantities, and Figure 8 illustrates
the spectra of the shallower primaries for each model, before and after the correction. The
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Figure 5: Primary generated at interface 1 in Figure 3 for all models. These are the events I intend to
compensate for transmission losses using the discrepancy between the actual multiple generated at
interface 1 and the prediction of the internal multiple attenuation algorithm algorithm: (A) The
low absorptive Q-profile, (B) the intermediate Q-profile, and (C) the high absorptive Q-profile.

recovery of high frequencies is notable. In Figure 9, we illustrate the corrected primaries after
inverse Fourier transforming to the time domain, and compare the results against their idealized
counterparts constructed without transmission losses. Figures 10 to 12 illustrate in close succession
the original primary in the data (top panel), the corrected primary (middle panel) and the idealized
primary (bottom panel), for all models.
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Figure 6: The spectra of the multiple and its prediction from the internal multiple attenuation algorithm
algorithm. The ratio between each pair of curves will be used for creating an operator for correcting
the primaries of its transmission losses: (A) The low absorptive Q-profile, (B) the intermediate
Q-profile, and (C) the high absorptive Q-profile.
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Figure 7: Operators for correcting the primaries from transmission losses. They were generated by tak-
ing the ratio between the spectrum of the actual multiple and its prediction from the internal
multiple attenuation algorithm algorithm in figure 6: (A) The low absorptive Q-profile, (B) the
intermediate Q-profile, and (C) the high absorptive Q-profile.
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Figure 8: Spectra of the original primaries and the corrected primaries for each model. These correction
were performed by using the operator depicted in figure 7: (A) The low absorptive Q-profile, (B)
the intermediate Q-profile, and (C) the high absorptive Q-profile.
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Figure 9: The corrected primaries after the application of the operators in Figure 7 that were obtained
by taking the ratio between the actual multiples and its prediction from the internal multiple
attenuation algorithm algorithm: (A) The low absorptive Q-profile, (B) the intermediate Q-
profile, and (C) the high absorptive Q-profile.
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Figure 10: The actual primary (A), the corrected primary (B) and the idealized primary (C), that was
generated by dropping the transmission coefficients in the modeling, for the low attenuation
case.
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Figure 11: The actual primary (A), the corrected primary (B) and the idealized primary (C), that was
generated by dropping the transmission coefficients in the modeling for the medium attenuation
case.
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Figure 12: The actual primary (A), the corrected primary (B) and the idealized primary (C), that was
generated by dropping the transmission coefficients in the modeling, for the high attenuation
case.
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The discrepancy between the corrected primaries and idealized primaries is of a form and magni-
tude expected given the absorptive correction approximation, which neglects the local transmission
through the boundary nearest the primary’s point of reflection.

5 Conclusions

In this paper we have presented a direct, data-driven procedure for correcting a primary for trans-
mission losses using internal multiples and the output of the inverse scattering series internal mul-
tiple attenuation algorithm.

We have made particular mention and use of the distinction between situations involving significant
absorption and situations that are largely acoustic or elastic. In spite of this broad categorization
(that is found to be practically important), one of the strengths of the approach is that it will act to
correct transmission losses whatever their physical origin or mechanism, without requiring a precise
model. In this sense the approach is truly data-driven – the events in the data, in comparison to
one another, “decide” what the transmission loss must be.

Simple numerical results are encouraging and motivate examination of the approach in the presence
of more complex media, both absorptive and otherwise. The main tool in this approach, the internal
multiple algorithm, is immediately applicable in multiple dimensions, and since the amplitude error
is in terms of plane wave transmission coefficients, a plane wave decomposition of 2D and/or 3D data
will likely suffice to extend the method. Nevertheless, detailed extension of the approach stands
as ongoing and future research. For these reasons in particular, we identify field data testing as
a medium-term to long-term goal, contingent on the fundamental study of the internal multiple
attenuation amplitudes in multiple dimensions.
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Correcting primary amplitudes for plane wave transmission loss
using internal multiple attenuation II: a direct procedure for the
many-layers case

J. E. Lira, K. A. Innanen, A. C. Ramirez and A. B. Weglein, M-OSRP, University of Houston

Abstract

In the previous paper we described an iterative procedure for correcting reflected primary ampli-
tudes for transmission losses through an unknown layered overburden. The correction operator
is constructed using the inverse scattering series internal multiple attenuation algorithm, in par-
ticular making use of the discrepancy between its prediction and the actual amplitude of the
multiples. The approach relies on the identification of events above the primary that is to be cor-
rected. When the number of layers and events increases and/or the identification of individual
events becomes more difficult, the procedure in this form may become inconvenient to apply. In
this paper we specifically address this issue and present an approximation allowing the operator
to be similarly calculated, but with the number of events to be identified, independent of the
number of interfaces in a stratified overburden, reduced to one multiple and one primary. When
the corrected primary is numerically compared to the idealized primary (with no transmission
losses) it is verified that the approximation is incorrect only by the losses experienced in the
lowest of the stack of many layers. Importantly, the correction procedure works correctly to
correct either or both intrinsic and scattering attenuation, without knowing which mechanism
is in place.

1 Introduction

In the previous paper we presented an iterative method for correcting the overburden effects on
primary amplitudes without the need for such a priori information, using the inverse scattering
series internal multiple attenuation algorithm (Araújo, 1994; Weglein et al., 1997, 2003). Synthetic
testing of the methodology confirmed the potential practical value of the approach. However, one
of the method’s requirements, the need to isolate and analyze individual events reflecting from
structures shallower than the primary to be corrected, will likely become burdensome when the
number of contributing events and their proximity to one another grows. In this situation, i.e., in
a many-layers case, the procedure in its original form (Lira et al., 2008) may become inconvenient
to apply.

In this paper we present an altered, approximate form for the procedure, which reduces the number
of events to be identified to just the primary to be corrected and a single associated multiple. The
approximation error of this new procedure is shown to be due only to the propagation losses within
the bottom-most of a stack of layers, i.e., the layer immediately above the reflector. The extension is
therefore well-suited to the case when there are many layers overlying the bottom layer, in particular
if they are thin enough to make isolation of the reflectors associated with them practically difficult.
When the number of layers above a reflector to be corrected grows very large and the thickness
of each layer falls below the dominant wavelength of the seismic wavefield, we point out that our
procedure becomes, in effect, a correction of a component of the stratigraphic filtering effect.
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2 A short review of the iterative procedure

The internal multiple attenuation algorithm is a series algorithm that attenuates sequentially higher
orders of internal multiples in fully 3D pre-stack reflection data (Weglein et al., 2003). The first
term of that algorithm in its 1D form for normal incidence data with a plane wave source (Araújo,
1994; Weglein et al., 1997) is:

b3IM (kz) =
∫ ∞

−∞
dz′1b1(z

′
1)e

ikzz′1

×
∫ z′1−ε

−∞
dz′2b1(z

′
2)e

−ikzz′2

∫ ∞

z′2+ε
dz′3b1(z

′
3)e

ikzz′3 ,

(1)

where ε is a small constant determined by the approximate length of the wavelet. The first term of
the series provides the correct traveltime, and approximate amplitude, of the predicted multiples.
The steps for producing the output are described in Weglein and Matson (1998), where b1(z) is
the data in the pseudo-depth domain migrated with waterspeed. The term b1(z) is the input for
equation 1. The algorithm can be understood in terms of sub-events, events that are combined to
predict the internal multiple. In Figure 1 we schematically illustrate three events, two primaries, the
shallower PS and the deeper PD, and one multiple, MA. The algorithm combines the two primaries

Figure 1: A constant density 1-D model, comprised of a stack of five layers, where the velocities range
from c1 to c4. Three events are displayed, two primaries PS and PD and one multiple MA.
The transmission and reflection coefficients are displayed above each interface, Rn signifying
the reflection coefficient at the bottom of the nth layer and Tnm signifying the coefficient of
transmission from layer n to layer m.

on the left to generate the multiple prediction, MP . See Figure 2. In the previous chapter it was
also pointed out that there is an excess of transmission coefficients in the prediction. In Figure 2,
these excess transmission coefficients are circled. This excess of transmission coefficients within the
prediction, which was discussed by Weglein and Matson (1998) and called the amplitude factor by
Ramirez and Weglein (2005) is given by

AFn =
{
T01T10 for n=1;∏n−1

i=1 (T 2
i,i−1T

2
i−1,i)Tn,n−1Tn−1,n for 1 < n < J,

(2)
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Figure 2: A constant density 1-D model, comprised of a stack of five layers, where layers 0 to 4 with
velocities ranging from c0 to c4, respectively. Three events are displayed, two primaries PS and
PD and one multiple MA. The transmission and reflection coefficients are displayed above each
interface, Rn signifying the reflection coefficient at the ]bottom of the nth layer and Tnm signifying
the coefficient of transmission from layer n to layer m.

where J is the total number of interfaces in the model. By comparing equation 2 and, for instance,
Figure 2, AF can be seen to be related, but not equal, to the transmission losses experienced by a
primary reflecting upward at the reflector where the multiple experienced its shallowest downward
reflection.

We have used these relationships in the previous chapter to formulate a recursive procedure to
correct the amplitudes of primaries for such overburden transmissions. The procedure involves
iteratively calculating a primary correction operator (PCO) using the amplitude factor AFn:

PCOn ≡
PCOn−1

AFn
, (3)

PCO0 = 1,

where n is the interface where the downward reflection of the multiple takes place; it is also proximal
to where the upward reflection of the primary takes place. The operator PCO is defined in the
frequency domain and is multiplicatively applied to the spectrum of the primary. After it has been
applied, the amplitude of the primary was shown to be due solely to the reflection coefficient at
the interface in question. The authors derived the amplitude factor for both elastic and absorptive
media; the procedure for calculating the PCO is mathematically the same for both, but which
primary is to be corrected with which multiple prediction was argued to depend on the medium
model type.

3 Correction of primary amplitudes for transmission losses through
an unknown, many-layered acoustic overburden

The recursive procedure showed potential practical value in numerical testing. However, one of the
method’s requirements, the need to isolate individual events reflecting from structures shallower
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than the primary to be corrected, may become burdensome in a actual many-layers case. We
begin by considering a few-layer case: the simple 1-D normal incidence acoustic/elastic layered
medium displayed in Figure 3 showing two primaries P1 and P2, and two multiples, M1 and M2.
A mathematical representation of primary P1 is:

Figure 3: A constant density 1-D model, comprised of a stack of three layers, where the velocities range
from c1 to c3. Four events are displayed, two primaries P1 and P2 and two multiple M1 and M2.
The transmission and reflection coefficients are displayed above each interface, Rn signifying
the reflection coefficient at the bottom of the nth layer and Tnm signifying the coefficient of
transmission from layer n to layer m.

P1(t) = R1δ(t− t1), (4)

where t1 = 2z1
c0

is the arrival time and R1 is the reflection coefficient at interface 1. In the frequency
domain the same event can be described in terms of amplitude and phase as:

P1(ω) = eik1z1R1e
ik1z1 , (5)

where z1 is the depth of interface 1, k1 = ω
c1

, where ω is the angular frequency and c1 is the velocity
of layer 1. For the primary P2 we write:

P2(ω) = eik1z1T12e
ik2(z2−z1)T23e

ik2(z3−z2)R3e
ik2(z3−z2)T32e

ik2(z2−z1)T21e
ik1z1 , (6)

where Tnm represents the transmission coefficient from interface n to interface m, k2 = ω
c2

and
k3 = ω

c3
, and zn represents the depth of interface n.

We next re-visit how the procedure of the last chapter would be carried out to correct the amplitude
of P2 for transmission losses (i.e., T12T23T32T21). The iterative procedure requires the user to
identify, first, P1 and M1, in order to calculate PCO1 and then M2, to calculate the AF2 and from
that the PCO2, as in equation 3. At this point the issue is evident: the individual isolation of
each contributing event becomes less straightforward the more layers there are in the overburden.
The worst case scenario would be a many-layered medium where the thicknesses of the layers are
below the resolving power of the data, e.g., where a train of short-period multiples below the seismic
resolution can cause an absorption-like effect even in a fully elastic medium (O’Doherty and Anstey,
1971). The approximation we next introduce addresses this issue and allows the PCO calculation
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to occur without an identification and isolated analysis of all events above the lowest layer in a
multi-layer stack, leading to a correction operator able to correct even the stratigraphic filtering
effect. To derive the approximation, I consider the multiple prediction MP illustrated in Figure 2.

Since the time of the multiple prediction is exact, we omit the phase terms, and write the amplitude
AMP

for the predicted multiple MP as:

AMP
= [T01T10]2[T12T21]2[T23T32]2[T34T43]︸ ︷︷ ︸

AF

.AMA
, (7)

where AMA
is the amplitude of the actual multiple (MA) in Figure 3, and AF is the amplitude

factor. Comparing the transmission coefficients that conceal the reflection coefficient information,
i.e., R3 in the primary PS , in Figure 3, which is expressed by:

Ps(ω) = e2ik0z0e2ik1(z1−z0)e2ik2(z2−z1)e2ik3(z3−z2)[T01T12T23]R3[T10T21T32], (8)

with AF equation 7, they are seen to be differing only by an extra [T34T43] in the latter. Recalling
that AF is directly computable in terms of the data and the multiple prediction, suppose next the
square root of AF were taken:(√

AF
)−1

=
(
[T01T10][T12T21][T23T32][

√
T34T43]

)−1
. (9)

Comparing this quantity with the transmission factors influencing the primary in equation 8, we
argue that equation 9 can be made to act as an approximate multiplicative correction operator
(i.e., a new PCO):

PCO = (
√
AF )−1 =

1(
[T01T10][T12T21][T23T32][

√
T34T43]

) . (10)

The missing
√
T34T43 produces an error due only to the last interface. In the many-layers case AF

would be a function of the product of as many transmission coefficients as there are interfaces in
the overburden. Since this number is large by definition in the many-layers case, we suggest that
the approximation error of this procedure, applied in the right environment, to be small. Notice
that in calculating this new, approximate operator PCO we have used as input only one multiple
and its prediction, and have ignored all events reflecting above layer 3.

4 Correction of primary amplitudes for transmission losses through
an unknown, many-layered absorptive overburden

We next extend the procedure to include the absorptive case. In the previous chapter, the absorp-
tion model of Aki and Richards (2002) is used:

kn =
ω

cn

1 +
i

2Qn
−

log
(

ω
ω0

)
πQn

 , (11)
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where cn is the velocity of the n-th layer, zn is the depth, and k0 = ω
c0

. In the previous chapter the
local transmission coefficients Tnm were re-written in a way that included absorption, which was
assumed to dominate over “local” transmission through boundaries in an absorptive medium. The
new transmission coefficients Tnm were written:

Tnm =

 2cm
(
1 + F (ω)

Qm

)−1

cn

(
1 + F (ω)

Qn

)−1
+ cm

(
1 + F (ω)

Qm

)−1


︸ ︷︷ ︸

Tnm

Attenuation term︷ ︸︸ ︷
e
− ω

2Qncn
(zn−z(n−1)) e

−iω
πQncn

log( ω
ω0

)(zn−z(n−1)), (12)

where F (ω) = i
2−

log ω
ω0

π and the term between the brackets is the local transmission coefficient Tnm.
Tnm includes not only the local transmission coefficients Tnm but also the term, e−

ω
2Qncn

(zn−z(n−1)),
which represents attenuation in the nth layer. The two primaries in Figure 5, PS and PD, can be
expressed using the new transmission coefficients Tnm:

Ps(ω) = e2ik0z0T01T10e
2ik′1(z1−z0)T12T21e

2ik′2(z2−z1)T23T32e
2ik′3(z3−z2) (13)[

e
− ω

Q3c3
(z3−z2)

e
− 2iω

πQ3c3
log( ω

ω0
)(z3−z2)

]
R3,

Pd(ω) = e2ik0z0T01T10e
2ik′1(z1−z0)T12T21e

2ik′2(z2−z1)T23T32e
2ik′3(z3−z2) (14)

T34T43e
2ik′4(z4−z3)

[
e
− ω

Q4c4
(z4−z3)

e
− 2iω

πQ4c4
log( ω

ω0
)(z4−z3)

]
R4.

where k′n = ω
cn

is real. We again write the amplitude of the multiple prediction AMP
(Figure 4) for

the multiple MA in Figure 5, now using absorptive coefficients:

AMP
= [T01T10]2[T12T21]2[T23T32]2[T34T43]AMA

, (15)

where AMA
is the amplitude of the actual multiple MA. That is, the amplitude factor for the

absorptive medium case AFa is:

AFa = [T01T10]2[T12T21]2[T23T32]2[T34T43]. (16)

A comparison of AFa in equation 16 to thetransmission coefficients concealing the reflection coef-
ficient information in the primary PS (equation 13), again reveals that they are equal but for the
term [T34T43]. Following the same procedure for the acoustic/elastic case, we take the square root
of AF and write an absorptive correction operator, the PCOa as:

PCOa =
(√

AFa

)−1
=
(
[T01T10][T12T21][T23T32][

√
T34T43]

)−1
. (17)

To focus on its amplitude, I re-write equation 13 taking the absolute value of Ps:

|Ps(ω)| = |T01T10||T12T21||T23T32||R3|, (18)

and, applying the PCOa to Ps(ω), we generate the absorption-corrected primary Psc :

|Psc | =
∣∣∣∣ 1√
T34T43

∣∣∣∣ |R3|. (19)
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Figure 4: How the inverse scattering series internal multiple attenuation algorithm combines the events PS

and PD in Figure 5 to generate the multiple prediction MP . The time of the multiple is predicted
by summing the times of the deeper primaries (in this case, PD and itself) and subtracting the
time of the shallower primary (in this case PS). The amplitude of the prediction is the product
of the amplitudes of all events. The predicted time is exact, and the predicted amplitude has an
excess of transmission coefficients (circled), when compared to the actual multiple.

Figure 5: A constant density 1-D model, comprised of a stack of five layers, where layers 1 to 4 are ab-
sorptive with the absorption parameters and velocities ranging from Q1 to Q4 and from c1 to c4,
respectively, and layer 0 is non-absorptive, i.e., Q0 → ∞, and velocity c = c0. Three events are
displayed, two primaries PS and PD and one multiple MA. The transmission and reflection co-
efficients are displayed above each interface, Rn signifying the reflection coefficient at the bottom
of the nth layer and Tnm signifying the coefficient of transmission from layer n to layer m.

Using equation 12, the term in the denominator of equation 19 can be written as:√
T34T43 = e

− ω
2Q3c3

(z3−z2)
[√

T34T43e
−iω

πQ3c3
log( ω

ω0
)(z3−z2)

]
. (20)

Equation 20 is again dominated by the real exponential
(
e
− ω

2Q3c3
(z3−z2)

)
, but, since in the many-

layers case any individual layer’s influence is expected to be small, it is true that:

|Psc | ≈ |R3|. (21)
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The operator PCOa, which was built directly from data, is by this argument able to correct the
transmission losses experienced by the primary PS , to within an error that shrinks as the thickness of
the lowest layer decreases. After the identification of the multiple whose downward reflection takes
place at the same interface at which the primary to be corrected reflects - the main requirement
of the approach - the procedure is fully data-driven. In the case of a many-layered medium, where
the thickness of the layers may be below the seismic resolution, this direct approximate approach
avoids the need for isolation of reflectors above the one generating PS . This property suggests
that the procedure is suitable for correcting absorptive effects generated by multiple reverberation
in a thin, “many-layers” medium. The procedure is also independent of the physical mechanism
causing the absorptive effects, and is specifically suitable for situations combining intrinsic and
extrinsic (“scattering”) attenuation. In the next section we present three numerical examples of
the procedure in use.

5 Numerical examples

In this section we present three numerical examples of absorptive models, whose properties are
described in Table 1. The models are comprised of a stack of horizontal layers. For the sake
of clarity, we model only the four events shown in Figure 6. We then generate three zero-offset

Figure 6: A 1-D model comprised of a stack of horizontal absorptive layers, whose parameters are displayed
in Table (1), and the four events, three primaries P1, P2 and P3 and a multiple MA illustrated
in Figure 7.

traces (Figure 7), run the internal multiple prediction algorithm, calculate the PCO with the direct
procedure described in the previous section, and apply the operator to P2 in Figure 8 to correct it
for transmission losses.
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Figure 7: An illustration of the three synthetic zero-offset traces generated using the parameters of Table
(1), showing four events, three primaries, P1, P2, and P3 and one multiple Ma. (A) The low
absorptive Q-profile, (B) the intermediate Q-profile, and (C) the high absorptive Q-profile.
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Figure 8: An illustration showing in detail the primaries P2, whose absorptive effects we want to correct
with the direct procedure, for the Q-profiles listed in Table 1. (A) The low absorptive Q-profile,
(B) the intermediate Q-profile, and (C) the high absorptive Q profile.
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Depth (m) c (m/s) A B C
000 - 600 1500 ∞ ∞ ∞
600 - 1600 3300 650 400 250
1600 - 3100 3550 520 320 200
3100 - 4400 3750 390 240 150
4400 - 5900 3900 162.5 100 62.5
5900 - ∞ 4000 97.5 60 37.5

Table 1. Absorptive Earth models.

The events to be corrected, P2, are shown in Figure 8. The multiple MA (Figure 7) that is to be
used to correct P2 is identified and isolated1 for all three Q-profiles. The next step is to generate
the multiple prediction, and this is done by using the data as the input for the internal multiple
attenuation algorithm. With the multiple prediction and actual multiple available, both spectra
are computed as shown in Figure 9.
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Figure 9: An illustration showing the spectra of the actual multiple MA(dashed curve), and the multiple
prediction of the internal multiple attenuation algorithm (solid curve) for the three Q-profiles
listed in Table (1). (A) The low absorptive Q-profile, (B) the intermediate Q profile, and (C)
the high absorptive Q-profile. The ratio of each pair of spectra is used to construct the correction
operator PCO.

AFa in equation 16 is calculated by taking the ratio of the spectra. Following equation 17 the
square root of AFa is next taken to calculate the PCO. The operator is illustrated in Figure 10.

1The internal multiple prediction algorithm itself acts as a useful tool for bootstrap identification of the needed
multiples.
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Figure 10: An illustration showing the absolute value of the primary correction operators PCO, calculated
using equation 17, i.e., by taking the ratio of the spectra of the actual multiple and the internal
multiple attenuation algorithm prediction, for the three Q-profiles listed in Table 1. (A) The low
absorptive Q-profile, (B) the intermediate Q-profile, and (C) the high absorptive Q-profile.

The final step is to apply the operator to the original primary, P2, in order to correct it for the
transmission losses along its path. Multiplying the spectrum of P2 by the operator, PCO, the
spectrum is corrected. In Figure 11 both spectra, the original spectrum of P2 and the corrected
spectrum, are shown. From the frequency domain, we go back to the time domain and display
finally the corrected primary P2C(t), for all three Q-profiles of Table (1), Figure 12.
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Figure 11: An illustration comparing spectra of the original primary P2 (dashed) and the corrected pri-
mary P2C (solid), after the application of the primary correction operators PCO illustrated in
Figure 10, for the three Q-profiles listed in Table 1. (A) The low absorptive Q-profile, (B) the
intermediate Q-profile, and (C) the high absorptive Q-profile.
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Figure 12: An illustration of the corrected primaries P2C in the time domain. (A) The low absorptive
Q-profile, (B) the intermediate Q-profile, and (C) the high absorptive Q-profile.

As this is a numerical exercise, and in order to evaluate the direct procedure, we numerically
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generate an idealized primary PsId, dropping all the transmission coefficients, and write it as follows:

P2Id(ω) = e2ik0z0e2ik′1(z1−z0)e2ik′2(z2−z1)e2ik′3(z3−z2)︸ ︷︷ ︸
Γ

R3. (22)

We use equation 22 as a benchmark. The closer P2C is to P2Id, the more effective is the PCO and
the direct procedure. Figures 13 to 15 display mosaics with the three primaries P2, P2C and P2Id

for all three Q-profiles of Table (1).
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Figure 13: An illustration (A) the original primary P2 in the data, (B) the corrected primary P2C , and
(C) the idealized primary P2Id without transmission losses for Q-profile A in Table (1), the low
attenuation case.
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Figure 14: An illustration (A) the original primary P2 in the data, (B) the corrected primary P2C , and (C)
the idealized primary P2Id without transmission losses for Q-profile B in Table (1), the medium
attenuation case.
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Figure 15: An illustration (A) the original primary P2 in the data, (B) the corrected primary, P2C and
(C) the idealized primary P2Id without transmission losses for Q-profile C in Table (1), the high
attenuation case.
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Conclusions

We propose a direct method for compensating the losses experienced by the primaries in an ab-
sorptive medium using the inverse scattering series internal multiple attenuation algorithm (Araújo,
1994; Weglein et al., 1997). The direct procedure is based on our observations about the dependence
of our iterative procedure (Lira et al., 2008) on event identification.

In the direct procedure the event identification requirement is reduced to the primary to be corrected
and the associated multiple generated at the same interface. After the identification of the events
all the procedure is data driven and the correction is determined solely by the characteristics of
the data. All the losses above the bottom layer, layer 3 in Figure 6, are fully corrected. The
number of layers above layer 3 does not affect or change the procedure, even if such layers are
not resolvable by the seismic method. A good example of such situation is a thin layered medium
with unresolvable short periods multiples causing an absorption-like effect. The losses in the last
layer, layer 4 in Figure 6, were partially corrected; however, in a many-layered medium we expect
such losses to be very small due to the small thicknesses of the layers. The procedure corrects the
absorption independent of the mechanism that has generated such effects. Intrinsic attenuation
and/or stratigraphic filtering effects are expected to be corrected in the same way.
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Aperture-compensated linear asymptotic imaging and testing as
input for the nonlinear velocity independent depth imaging
algorithms of the inverse scattering series: analysis and plans

Z. Wang, A. B. Weglein and F. Liu, M-OSRP, University of Houston

Abstract

Seismic imaging methods use seismic data measurements on the earth’s surface to make in-
ferences about the locations of subsurface reflectors. Any imaging method requires data on
the measurement surface where the method’s underlying theory predicts it will arrive. Full
wave theory, like that underlying inverse scattering imaging methods, predicts wave energy ev-
erywhere on the measurement surface. When data collection is limited by economic and/or
practical considerations, a compromise to wave theory using asymptotic analysis can be used
to image limited data with a less complete theory. Wang et al. (2007) provides an in-line wave
theoretic and cross-line asymptotic algorithm when the data is adequately sampled in the in-
line direction but has a serious aperture limitation in the cross-line direction. In this note, we
will continue to test this algorithm and use its result as the input for the nonlinear imaging
algorithms of the inverse scattering series. The results show that this algorithm cannot provide
accurate enough input, and one ad hoc approach is used to recover a more accurate value with
some clear improvement.

1 Introduction

The inverse scattering series, a multidimensional direct inversion method, has been used to derive
candidate direct nonlinear imaging algorithms that do not require the actual propagation velocity.
In this series, α1 is first order in the data, providing a linear approximation to the actual medium.
Shaw and Weglein (2004) successfully isolated the leading order imaging subseries (LOIS) in the
laterally invariant acoustic medium and Liu et al. (2005) derived the higher order imaging subseries
(HOIS) in the laterally varying 2D and 3D acoustic media. These two algorithms are nonlinear
and depend directly on the accuracy of α1. Therefore, calculating α1 accurately from the data D
is an important step for the use of the algorithms.

Currently, data collection is often adequate in the in-line direction but has a serious aperture
limitation in the cross-line direction because of economic and/or practical considerations. Based
on the fundamentals of the wave theoretic algorithm (Liu et al., 2007) and the 2.5D finite-aperture
migration (Stolt and Benson, 1986), we provided in Wang et al. (2007) an algorithm which is
wave theory imaging in the direction that has adequate collection, and asymptotic migration in
the aperture-limited cross-line direction. In this note, we test this algorithm in the 2D constant-
density acoustic case, which has the aperture-limited cross-line direction, and input the result to the
nonlinear imaging algorithms of the inverse scattering series to see how it satisfies the requirements
of the nonlinear algorithms stated above. The results show that it cannot satisfy the requirement
well. We address this by attempting to recover a more accurate value with an ad hoc approach,
with some clear improvement.
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2 Aperture compensated algorithm

Following the steps in Wang et al. (2007), we will provide the algorithm for the 2D case which just
has the aperture-limited cross-line direction.

For a 2D constant-density acoustic medium, the wave equations for the actual and reference wave
field are expressed by:

(
∂2

∂x2
+

∂2

∂z2
+

ω2

c2(x, z)
)G(x, z, xs, zs, ω) = δ(x− xs)δ(z − zs),

(
∂2

∂x2
+

∂2

∂z2
+
ω2

c20
)G0(x, z, xs, zs, ω) = δ(x− xs)δ(z − zs).

Using ISS order-by-order logic, for the first order the equation is:

D(xg, xs, ω) = G(xg, zg, xs, zs, ω)−G0(xg, zg, xs, zs, ω) = G0V1G0.

Fourier transform over xg and xs on both sides,

D(kg,−ks, ω) = − ω2

4qgqsc20
α1(kg − ks,−(qg + qs)) = − ω2

4c20qgqs
α1(km,−qz). (1)

The quantities km, qz used here and kh to be used later are defined as following:

km = kg − ks, km = kg + ks, qz = qg + qs.

The problem for solving for α1 is overdetermined because D has one more degree of freedom than
α1. We will use that to compensate for the limited aperture.

In general, the inversion of α1 can be written as a linear combination of the data:

α1(km, qz) =
∫ ∞

−∞
dkhL(km, kh, qz)D(kg,−ks, ω). (2)

Using equation 1 and equation 2 together, we get the restriction function L:

1 = −
∫ ∞

−∞
dkh

k2

4qgqs
L(km, kh, qz). (3)

If we define β = km
qz

and γ = kh
qz
, then qg, qs and qz can be expressed as functions of β, γ and ω:

qg =
qz
2

(1− βγ), qs =
qz
2

(1 + βγ),
ω

c0
=
qz
2

√
(1 + β2)(1 + γ2).

Plugging into equation 3,

1 = −ω/c0
2

∫ ∞

−∞
dγ

√
(1 + β2)(1 + γ2)

1− β2γ2
L(ω, β, γ). (4)
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There are many choices, one of which is:

L(km, kh, qz) = −2c0
ω

1− β2γ2√
(1 + β2)(1 + γ2)

· 1√
2πc

e−
(γ−b)2

2c2 . (5)

where b and c can take any value except c 6= 0. Here we use a Gaussian distribution instead of a
boxcar function (Wang et al., 2007) to make L smoother at the boundary.

Inverse Fourier transforming equation 2 from the km, qz domain to the x, z domain:

α1(x, z) =
∫ ∞

−∞
dkh

∫ ∞

−∞
dkm

∫ ∞

−∞
dqze

i(kmx−qzz)L(km, kh, qz)
1

(2π)2

∫ ∞

−∞
dxg

∫ ∞

−∞
dxse

i(ksxs−kgxg)D(xg, xs, ω).

Changing the integration variables from (km, kh, qz) to (kg, ks, ω) and the order of integration:

dkmdkh = 2dkgdks, dqz =
qzωdω

c2qgqs
.

α1(x, z) =
∫ ∞

−∞
dxg

∫ ∞

−∞
dxs

∫ ∞

−∞
dω

1
c0
D(xg, xs, ω)I, (6)

where

I =
1

(2π)2

∫ ∞

−∞
dkg

∫ ∞

−∞
dkse

−i[kg(xg−x)+qgz]e−i[ks(x−xs)+qsz] 2ωqz
c0qgqs

L(km, kh, qz).

Making the stationary phase approximation to kg, (the quantities with hats are the values at the
stationary points) ∫ ∞

−∞
dkgA(kg)eihg ≈ A(k̂g)

√
2iπ

ĥ′′g
eiĥg ,

we obtain :

hg = −[kg(xg − x) + qgz] h′g = −[(xg − x)− kgz

qg
] h′′g =

zk2

q3g

k̂g =
xg − x

rg
k ĥg = −rgk ĥ′′g = r3g/(z

2k).

The same thing for ks, and the final result for I is:

I =
iω

πc0
e−iw(rg+rs)/c0

(rg + rs)z
(rgrs)3/2

L(k̂m, k̂h, q̂z). (7)

Plugging equation 5 and equation 7 into equation 6

α1(x, z) = −
∫ ∞

−∞
dxs

∫ ∞

−∞
dxg

2i
π

rz

(rgrs)3/2

1− β2γ2√
(1 + β2)(1 + γ2)

· 1√
2πc

e−
(γ−b)2

2c2

∫ ∞

−∞
dω

1
c0
e−iwr/c0D(xg, xs, ω)

= − 2i
c0π

∫ ∞

−∞
dxs

∫ ∞

−∞
dxg

rz

(rgrs)3/2

1− β2γ2√
(1 + β2)(1 + γ2)

· 1√
2πc

e−
(γ−b)2

2c2 D(xg, xs, r/c0) (8)

If we choose some appropriate values for b and c, e.g. b = γ1+γ2

2 and c = γ2−γ1

4 where γ1 and γ2 are
the values of γ on the boundary, the contribution of the data outside the aperture would be small,

α1(x, z) ≈ − 2i
c0π

∫ ∞

−∞
dxs

∫ xs+h2

xs+h1

dxg
rz

(rgrs)3/2

1− β2γ2√
(1 + β2)(1 + γ2)

· 1√
2πc

e−
(γ−b)2

2c2 D(xg, xs, r/c0)

(9)
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3 Test of algorithm using a one-interface model

We start from the simplest case, a one-interface model, to test how this algorithm works. The
model is shown in Figure 1. The location for the interface and the velocity for each layer are shown
in the figure. Figure 2 is the shot gather we get using the finite-difference method. The receivers
are spread on one side of the source. We have also tested the algorithm using split-spread data but
there is little change, so we will use just the towed geophone data below.
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Figure 1: Model One: One-interface model
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Figure 2: Shot gather
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The reflection coefficient has the following form (Keys, 1989):

R(θ) =
(c1/c0)

√
1− sin2 θ −

√
1− (c21/c

2
0) sin2 θ

(c1/c0)
√

1− sin2 θ +
√

1− (c21/c
2
0) sin2 θ

,

here tanθ = |xg−xs|
2za

.

When θ = 0, the ideal value of α1 for the second layer is (Zhang, 2006):

α1(θ) = 4R(θ) cos2 θH(z − a) ≈ 0.3636. (10)

Figure 3 is the result of α1 using this aperture compensated linear asymptotic imaging algorithm.
In order to see the amplitudes of α1 more clearly, we pick the line at x = 2000m in Figure 3 and
draw their amplitudes in Figure 4.
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Figure 3: The imaging result of α1 for Model 1 with apertures = 50m(upper left), 250m(upper right),
1000m(lower left), 4000m(lower right).

From Figure 3 and Figure 4, we see that the form of α1 in a vertical line is a peak with long tails
in both directions. The depth of the interface is correctly located by the peaks in all four different
aperture cases. This is because we have just one interface, and knowing the water speed is enough
to predict its location. But the form of α1 differs from the case of fully collected data, which will
be a Heaviside function (Zhang, 2006), and the amplitudes, even for the largest aperture, are much
smaller than the value calculated in equation 10.
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Figure 4: Amplitudes of α1 at the line x = 2000m with apertures = 50m(upper left), 250m(upper right),
1000m(lower left), 4000m(lower right).

4 Test of algorithm using a two-interface model

We have seen that in the one-interface model case, although we can locate the interface correctly,
the form and amplitudes of α1 differ from what are analytically expected.

Next we consider a more complex model, the two-interface model shown in Figure 5, where the
location for each interface and the velocity for each layer are labeled. Here we will not be able
to migrate the second interface correctly, and would use the nonlinear imaging algorithms, (which
only depend on α1,) to improve the result.

The linear imaging result, α1, is shown in Figure 6 for four different aperture cases and Figure 7 is
also picking the line at x = 2000m in Figure 6 and drawing their amplitudes. We see that the first
interface is correctly located but the second interface is not, which is expected. The amplitude of
α1 is again different from its expected full-wave theoretic amplitude. Also, the second interface is
dimmed by the tail of the first interface. Figure 8 is the result of using the higher order imaging
subseries (HOIS) algorithm. We can see that it moves the second interface towards the desired
location but not significantly. It also moves the first interface, an undesired result.

5 Linear imaging in the presence of a wavelet

In this algorithm each datum can be considered to be scattered back from any point on an ellipse,
one of which is real. In the previous section, the data with a Gaussian wavelet, used to simulate the
δ function, are always positive. The values contributing to the wrong place will be added up and
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Figure 5: Model Two: Two-interface model
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Figure 6: The imaging result of α1 for Model 2 with apertures = 50m(upper left), 250m(upper right),
1000m(lower left), 4000m(lower right).

cannot be cancelled. That is why there are long tails around the peak at the interface. If we use a
vibrating wavelet such as the derivative of a Gaussian function, the positive value (corresponding
to the positive part in the wavelet) or the negative value (corresponding to the negative part in the
wavelet) will be added up only at the correct locations, because at these locations the scatterers are
real and the data show their properties. At the wrong locations, the scatterers are imaginary and
different data show different properties. Some data contribute positively and the others contribute
negatively, so they will cancel each other. The results are shown in Figure 9 and Figure 10.
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Figure 7: Amplitudes of α1 at the line x = 2000m with apertures = 50m(upper left), 250m(upper right),
1000m(lower left), 4000m(lower right).
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Figure 8: The imaging result of αHOIS for Model 2 with apertures = 50m(upper left), 250m(upper right),
1000m(lower left), 4000m(lower right).

Compared with Figure 6 and 7, the results are much clearer. But this result cannot be used as the
input for the HOIS algorithm because at the interface it is almost symmetric and the integral of
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Figure 9: The imaging result of α1 with the derivative of a Gaussian function as the wavelet for Model 2
with apertures = 50m(upper left), 250m(upper right), 1000m(lower left), 4000m(lower right).
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Figure 10: Amplitude of α1 with the derivative of a Gaussian function as the wavelet at the line x = 2000m
with apertures = 50m(upper left), 250m(upper right), 1000m(lower left), 4000m(lower right).

α1 is very small.

6 Revised α1

We have seen that this algorithm has changed the properties of α1. HOIS, using α1 as the input,
can do little to improve the imaging in this case. Can we better or more accurately recover α1?
One method we have tried is as follows: For the imaging result of α1, first find the interfaces. Then
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calculate the root mean square (RMS) value near the interface and use it as the α1 for the next
layer. Here, for the range to do the RMS we have chosen three times the length from the trough
to the peak. The revised α1 is shown in Figure 11 and Figure 12, and the result of αHOIS using
the revised α1 is shown in Figure 13.
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Figure 11: The revised α1 from Figure 6 with apertures = 50m(upper left), 250m(upper right),
1000m(lower left), 4000m(lower right).
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Figure 12: Amplitude of revised α1 in Figure 11 at the line x = 2000m with apertures = 50m(upper left),
250m(upper right), 1000m(lower left), 4000m(lower right).
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Figure 13: The result of HOIS using the revised α1 with apertures = 50m(upper left), 250m(upper right),
1000m(lower left), 4000m(lower right).
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Figure 14: Model three: Three-interface model

7 Test of algorithm using a three-interface model

We also tested this using the three-interface model shown in Figure 14. Figure 15 and Figure 16 are
the imaging result and the amplitudes of the result at the line x = 2000m. In the step of getting
the revised α1 with aperture=4000m, however, we cannot find the trough for the second interface
because of the tail of the first interface. Therefore, the method used before cannot be used for the
aperture=4000m case here. But for the aperture=50m, 250m and 1000m cases, the results are still
encouraging.
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Figure 15: Imaging result of α1 with derivative of Gaussian function as the wavelet for Model 3 with
apertures = 50m(upper left), 250m(upper right), 1000m(lower left), 4000m(lower right).
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Figure 16: Amplitudes of α1 at the line x = 2000m in Figure 15 with apertures = 50m(upper left),
250m(upper right), 1000m(lower left), 4000m(lower right).

8 Conclusions

We have used three different models to test the aperture-compensated linear asymptotic imaging
algorithm. The results showed that this algorithm has changed the characteristics of α1, making
it less accurate as input to the nonlinear velocity-independent depth imaging algorithms of the
inverse scattering series. We have addressed this by attempting an ad hoc approach to recover a
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Figure 17: Revised α1 using the α1 from Figure 15 with apertures = 50m(upper left), 250m(upper right),
1000m(lower left), 4000m(lower right).
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Figure 18: Result of αHOIS , using the revised α1 with apertures = 50m(upper left), 250m(upper right),
1000m(lower left), 4000m(lower right).

more accurate α1 value from the asymptotic result, with some clear improvement. More research
is needed and is underway.
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Abstract

A generalization of the single-parameter (velocity only) inverse scattering series (ISS ) leading
order and extended higher order imaging algorithms (LOIS and HOIS, respectively) to accom-
modate a multiparameter (parameters other than velocity can be varied) acoustic and elastic
earth were presented in the 2007 M-OSRP annual report (Jiang and Weglein, 2008). In this
report, as follow-up multiparameter imaging research, an initial 1D analytic example for a later-
ally invariant two-parameter (velocity and density) acoustic medium is presented where analytic
analysis and some numerical examples are used to examine how effective the 1D acoustic two-
parameter LOIS and HOIS imaging algorithms are working towards a satisfactory level in the
multiparameter imaging toolbox. Results show that both LOIS and HOIS imaging algorithms
are better at locating deeper reflectors than constant velocity migration, while the HOIS imaging
algorithm can better image deeper reflectors than the LOIS algorithm, especially at big incident
angles. The HOIS imaging algorithm has more tolerance than the LOIS algorithm for the mag-
nitude and duration of velocity and density contrasts. As a further step to the multi-parameter
imaging project, this initial analytic test of acoustic two-parameter imaging algorithm is very
important to provide details of how the amplitude information of the acoustic data set is used
in velocity-independent multi-parameter imaging algorithms. In future, the multi-component
elastic datasets will be studied both analytically and numerically for providing a “proper” linear
inversion of the imaging-related parameters.

1 Introduction

The one-dimensional leading-order imaging algorithm using inverse scattering theory and series
developed in the M-OSRP group is a data-driven algorithm and can achieve the imaging objective
to some satisfactory level (Weglein et al., 2000; Shaw et al., 2002; Shaw and Weglein, 2003; Shaw,
2005) without knowing any subsurface information but assuming only a constant reference velocity
field. For a larger velocity contrast model, more imaging subseries terms need to be captured to
form a higher order imaging algorithm (Liu et al., 2004, 2005; Liu, 2006) which can deal with
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multidimensional variations in the model. However, all the imaging algorithms mentioned above
make an assumption that velocity is the only medium parameter that varies, which is not true in a
real earth where other parameters other than velocity can vary, such as density. Recently, Fang Liu
tested the higher order imaging algorithm which was developed for velocity-only variation. The
tested result showed that the algorithm can fail if applied to a medium with both velocity and
density variation (discussed and shown within M-OSRP group). Therefore, based on an imaging
conjecture proposed by Weglein in 2008 (discussed within M-OSRP group), an imaging algorithm
was developed in the M-OSRP group in 2008 and reported in the 2007 M-OSRP annual meeting
which can deal with the imaging problems for a medium with both density and velocity variations
(Jiang and Weglein, 2008). A leading order imaging subseris (LOIS ) and its closed form were first
derived for a laterally invariant two-parameter (density and velocity) acoustic medium, and then
were extended by Weglein to a higher order imaging closed form (HOIS ) to accomodate multi-D
multiparameter acoustic and elastic media (discussed within M-OSRP group and later shown in
the 2007 M-OSRP annual meeting (Jiang and Weglein, 2008)).

This report is presented to demonstrate the effectiveness of the newly derived multi-parameter
imaging algorithms and its imaging capability through an initial analytic example of a 1D three-
layer acoustic medium with both velocity and density variations. The structure of this report is
as follows: Section 1 briefly introduces the history of the inverse scattering imaging algorithms;
Section 2 reviews the inverse scattering series which is the basis of the imaging algorithms to be
tested in the later sections; Section 3 briefly reviews the multiparameter ISS LOIS and extended
ISS HOIS imaging algorithms, in which the two-parameter acoustic ISS LOIS and its extended
ISS HOIS imaging algorithms will be tested in Section 4 ; An analytic dataset is prepared for a
three-layer acoustic medium with both density and velocity variations in the beginning of Section 4
and then is used to analytically calculate the LOIS algorithm. Numerical examples are presented
at the end of Section 4 ; Section 5 is the conclusion and discussion of the results reported in this
paper.

2 Inverse scattering theory and series

Scattering theory is a form of perturbation analysis. Generally speaking, it describes how a pertur-
bation in the properties of a medium relates to a wavefield that experiences that perturbed medium.
Consider the two differential equations governing wave propagation in these media (Weglein et al.,
2003):

LG = δ(r− rs), (1)
L0G0 = δ(r− rs). (2)

where L, L0 and G, G0 are the actual and reference differential operators and Green’s functions,
respectively, for a single temporal frequency, ω, and δ(r − rs) is a Dirac delta function. r and rs

are the field point and source location, respectively.
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2.1 Lippmann-Schwinger equation

The Lippmann-Schwinger equation is an integral solution to the wave equation (1) in terms of the
reference wave equation (2) and a perturbation operator defined as V = L0 − L:

Ψs = G−G0 = G0V G. (3)

where Ψs is the scattered field.

The total scattered field is related to the earth perturbation and the reference wave field (generally
using water as reference background for marine seismic exploration) by the above recursive integral
Lippmann-Schwinger equation. It is a direct solution to the real wave equation.

2.2 Forward scattering series

Expanding equation (3) by iteration (Taylor, 1972), a forward scattering series is obtained,

Ψs = G0V G0 +G0V G0V G0 + · · · (4)
= (Ψs)1 + (Ψs)2 + · · · , (5)

where (Ψs)n is the portion of Ψs that is nth order in V . The measured value of Ψs is the data, D,
where D = (Ψs)ms and ms denotes “on the measurement surface”.

The forward scattering series provides the ability to model the data since the perturbation V
underneath the measurement surface is assumed known in the forward problem.

2.3 Inverse scattering series

Expanding the perturbation operator V in orders of data D yields,

V = V1 + V2 + V3 + · · · (6)

where Vn is nth order in the data D.

An inverse scattering series is obtained by setting the same order of the data equal on both sides
of equation (4) at the measurement surface,

D = [G0V1G0]ms, (7)
0 = [G0V2G0]ms + [G0V1G0V1G0]ms, (8)
0 = [G0V3G0]ms + [G0V1G0V2G0]ms

+ [G0V2G0V1G0]ms + [G0V1G0V1G0V1G0]ms, (9)
...

The inverse scattering series provides a direct method for obtaining the subsurface information by
inverting the series order by order to solve for the perturbation V , using only the measured data
D and a reference wavefield G0.
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3 1D two-parameter acoustic medium

To study a 1D two-parameter acoustic medium where both velocity and density can vary, let us first
consider the 3D acoustic wave equations in the actual and reference medium (Zhang and Weglein,
2005), [

ω2

K(~r)
+∇ · 1

ρ(~r)
∇
]
G(~r, ~rs;ω) = δ(~r − ~rs),[

ω2

K0(~r)
+∇ · 1

ρ0(~r)
∇
]
G0(~r, ~rs;ω) = δ(~r − ~rs).

(10)

where G and G0 are the actual and reference Green’s functions, or wavefields, respectively, for a
single temporal frequency, ω. K is the bulk modulus and is equal to c2ρ where c is P-wave velocity
and ρ is density. The quantities with subscript “0” are in the reference medium, otherwise, they
are in the actual medium.

The perturbation operator is therefore defined as,

V = L0 − L =
ω2α

K0(~r)
+∇ · β

ρ0(~r)
∇, (11)

where α = 1− K0
K , β = 1− ρ0

ρ .

Similar to the operator V , we also expand α and β in orders of the data in considering a 1D acoustic
medium,

α(z) = α1(z) + α2(z) + ...

β(z) = β1(z) + β2(z) + ...
(12)

3.1 Leading order imaging subseries and closed form

By analytically calculating higher order (up to the 3rd order) ISS terms for the above 1D two-
parameter acoustic media, a (LOIS ) and its closed form were identified and reported in the 2007
M-OSRP annual report (Jiang and Weglein, 2008). The LOIS and its closed form are expressed
here and will be tested in the following section.

∞∑
n=0

(
−1

2
1

cos2 θ

)n
n!

dnDLOIS(z, θ)
dzn

[∫ z

−∞

(
α1(z′)− β1(z′)

)
dz′
]n

= DLOIS

(
z − 1

2
1

cos2 θ

∫ z

−∞

(
α1(z′)− β1(z′)

)
dz′
)
. (13)

Notice that the quantity DLOIS is defined as,

DLOIS(z, θ) ≡ 1
cos2 θ

α1(z) +
(
1− tan2 θ

)
β1(z). (14)
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It is a rescaled PP dataset after a constant velocity migration indicated by the 1st order ISS
equation calculated in Zhang and Weglein (2005):

DLOIS(z, θ) = − 4
ρ0
DPP (z, θ) (15)

3.2 Extended imaging algorithms based on imaging conjecture

As reported in the 2007 M-OSRP annual report (Jiang and Weglein, 2008), based on an imaging
conjecture proposed by Weglein, the above 1D two-parameter (velocity and density) acoustic LOIS
imaging closed form has been extended to a 1D three-parameter (density, bulk modulus and shear
modulus) elastic case (for elastic PP data only), and then to higher order imaging algorithms
(HOIS ) for both acoustic and elastic media.

(1) Extended 1D three-parameter elastic PP data only LOIS algorithm:

DLOIS(z) = −4DPP

(
z − 1

2
1

cos2 θ

∫ z

−∞

(
a1

γ(z′)− a1
ρ(z

′)
)
dz′
)

(16)

DPP (z, θ) is a PP component dataset,

DPP (z, θ) = −1
4
(
1 + tan2 θ

)
a1

γ(z)− 1
4
(
1− tan2 θ

)
a1

ρ(z) + 2
β2

0 sin2 θ

α2
0

a1
µ(z). (17)

where a1
ρ(z), a

1
γ(z), a1

µ(z) are the 1st order approximations of density, bulk modulus and shear
modulus variations, respectively. More details regarding the definitions of these parameters can be
found in Zhang and Weglein (2006).

(2) Extended 1D HOIS algorithms:
(i) for a 1D two-parameter acoustic medium,

DHOIS

(
z +

1
2

∫ z

−∞

α1(z′)− β1(z′)
cos2 θ − 0.25 (α1(z′)− β1(z′))

dz′
)

= DPP (z, θ) (18)

where DPP (z, θ) is expressed as,

DPP (z, θ) = −ρ0

4

(
1

cos2 θ
α1(z) +

(
1− tan2 θ

)
β1(z)

)
. (19)

(ii) for a 1D three-parameter elastic PP data only case,

DHOIS

(
z +

1
2

∫ z

−∞

a1
γ(z′)− a1

ρ(z
′)

cos2 θ − 0.25
(
a1

γ(z′)− a1
ρ(z′)

)dz′) = DPP (z, θ) (20)

where the PP dataset is defined in equation (17).
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It is quite straightforward to extend the above 1D acoustic/elastic HOIS closed form to a multidi-
mensional multi-parameter acoustic and elastic imaging closed form.
(3) For an acoustic medium,

DHOIS

(
x, y, z +

1
2

∫ z

−∞

α1(x, y, z′)− β1(x, y, z′)
cos2 θ − 0.25 (α1(x, y, z′)− β1(x, y, z′))

dz′
)

= DPP (x, y, z, θ) (21)

(4) For PP data in an elastic medium,

DHOIS

(
x, y, z +

1
2

∫ z

−∞

a1
γ(x, y, z′)− a1

ρ(x, y, z
′)

cos2 θ − 0.25
(
a1

γ(x, y, z′)− a1
ρ(x, y, z′)

)dz′) = DPP (x, y, z, θ) (22)

The multidimensional dataset D(x, y, z, θ), for the acoustic case, is a PP only dataset; for ocean
bottom measurements and an elastic medium, it can be a multi-component PP, PS, SP, or SS
dataset.

4 1D analytic example

In this section, we will present a 1D analytic example to test the above LOIS and HOIS two-
parameter imaging algorithms expressed in equation (13) and equation (18), respectively, for a
laterally invariant three-layer acoustic medium where both velocity and density can be varied.

4.1 1D two-parameter acoustic model

The model to be tested is shown in Figure 1. We will consider only two primaries reflected from the
1st interface and the 2nd interface, since the ISS imaging task has assumed that all seismic events
other than primaries have been removed already. Next we will analytically write out primaries data
based on this model.

4.2 1D analytic data preparation

Since both the LOIS and HOIS multiparameter imaging algorithms are data-driven algorithms, we
will first prepare analytic data for the above three-layered 1D acoustic model. The derivation of
the imaging algorithms assumes an experiment with line sources and line receivers. But the data
expressed at the end of this subsection is after plane wave decomposition, which is an immediate
and proper input to the imaging algorithms to be tested.

We will first write down the analytic reflection and transmission coefficients according to the dif-
ferent impedance in the three layers. For plane wave at different incident angles, the impedance
can be expressed as,

I0 =
c0ρ0

cos θ
I1 =

c1ρ1

cos i1
I2 =

c2ρ2

cos i2

(23)
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Figure 1: A cartoon of a 1D acoustic model with both velocity (c0, c1, c2) and density (ρ0, ρ1, ρ2) variations
in the three layers, where θ, i1, i2 are three incident angles in the layers, respectively; a and b are
two constants to express the real depths of the two interfaces. For simplicity, both source depth
zs and receiver depth zg are set to zero.

For 1D layered media, Snell’s law says that the value of the horizontal slowness p is constant through
different layers, and hence provides the following relation among the three incident angles in the
three layers of the media.

p =
sin θ
c0

=
sin i1
c1

=
sin i2
c2

(24)

Employing the above relation, we can rewrite the above impedances as,

I0 =
c0ρ0

cos θ
=

c0ρ0√
1− c20p

2
=
c0ρ0

x0

I1 =
c1ρ1

cos i1
=

c1ρ1√
1− c21p

2
=
c1ρ1

x1

I2 =
c2ρ2

cos i2
=

c2ρ2√
1− c22p

2
=
c2ρ2

x2

(25)

where xi =
√

1− c2i p
2, i = 0, 1, 2.
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Now we can express the reflection and transmission coefficients as,

R0(θ) =
I1 − I0
I1 + I0

R1(θ) =
I2 − I1
I2 + I1

T01(θ) = 1−R0 =
2I0

I1 + I0

T10(θ) = 1 +R0 =
2I1

I1 + I0

(26)

We will write down the analytic data in the frequency domain.

D̃PP (ω, θ) = ρ0R0(θ)
e2iνga

4πiνg
+ ρ0T01(θ)R1(θ)T10(θ)

e2iνga+2iqg(b−a)

4πiνg
(27)

where the two vertical wave vectors in the first two layers are expressed as,

νg =
ω cos θ
c0

=
ω

c0

√
1− c20p

2 =
ω

c0
x0 (28)

and,

qg =
ω cos i1
c1

=
ω

c1

√
1− c21p

2 =
ω

c1
x1 (29)

Performing an inverse Fourier transformation w.r.t. νg, we can obtain the PP data in the pseudo-
depth domain,

DPP (z, θ) = −ρ0R0(θ)H(z − a)− ρ0R
′
1(θ)H(z − b′(θ)) (30)

where the variable z is the Fourier conjugator of νg, and

b′(θ) = a+ (b− a)
c0
√

1− c21p
2

c1
√

1− c20p
2

= a+ (b− a)
c0x1

c1x0

R′1(θ) = T01(θ)R1(θ)T10(θ)

(31)

Equation (30) is the analytic data we prepared for the purpose of the following tests on the two-
parameter LOIS and HOIS imaging algorithms. The data in equation (30) is expressed in the
pseudo-depth domain since it is migrated with a constant reference velocity c0 which is in agreement
with the velocity in the first layer. Generally the value of c0 is water speed (1500m/s). After the
constant velocity migration, the water bottom, i.e. the 1st interface, is located exactly since we
have correct migration velocity for the 1st layer, but the 2nd interface is wrongly located to b′(θ)
instead of its real depth of b. It is understandable since we used a wrong migration velocity c0
instead of its real velocity c1. To understand whether b′(θ) is deeper or shallower than its real
depth b, we need to do further analysis on this quantity.
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Let us rewrite the expression of b′(θ) in equation (31) by using equation (24),

b′(θ) = a+ (b− a)
c0
c1

√
1 +

c20 − c21
c20

tan2 θ (32)

We will discuss two cases:
(1) for c0 < c1, c20 − c21 < 0. Then, b′(θ) < b and b′(θ) ↓ with θ ↑;
(2) for c0 > c1, c20 − c21 > 0. Then, b′(θ) > b and b′(θ) ↑ with θ ↑.

In other words, the migrated depth of the 2nd interface is shallower than its real depth when
the migration velocity is slower than its real velocity, and deeper than its real depth when the
migration velocity is faster than its real velocity. It is a reasonable result since constant velocity
migration is a linear migration, i.e. rescaling the time axis of the data set to depth axis by a con-
stant velocity. We emphasize this point here to show that there is a difference between the constant
velocity migration and the ISS LOIS and HOIS imaging shown later where the relation between
time domain and depth domain of the migration is no longer linear since the later imaging occurrs
in a nonlinear world. More details on this point will be discussed in the following subsections.

4.3 Analytic calculation of LOIS closed form

Now we can use the data prepared in equation (30) as an input to the LOIS two-parameter imaging
algorithm. Recall that in Zhang and Weglein (2005),

DPP (z, θ) = −ρ0

4

[
1

cos2 θ
α1(z) +

(
1− tan2 θ

)
β1(z)

]
(33)

Solve the above equation to obtain α1(z)− β1(z), using two separate incident angles,

α1(z)− β1(z) = − 4
ρ0

DPP (z, θ1)−DPP (z, θ2)
tan2(θ1)− tan2(θ2)

(34)

Insert the analytic expression of the data with different incident angles prepared in the previous
subsection,

α1(z)− β1(z) =
4

tan2(θ1)− tan2(θ2)
[(R0(θ1)−R0(θ2))H(z − a)

+R′1(θ1)H(z − b′(θ1))
−R′1(θ2)H(z − b′(θ2))]

(35)

Now we can calculate the integral with the above equation as the integrand, and hence get the
shifted quantity,

4zshift =
1

2 cos2 θ

∫ z

−∞
dz′
(
α1(z′)− β1(z′)

)
=

2
tan2(θ1)− tan2(θ2)

1
cos2 θ

[(R0(θ1)−R0(θ2)) (z − a)H(z − a)

+R′1(θ1)(z − b′(θ1))H(z − b′(θ1))−R′1(θ2)(z − b′(θ2))H(z − b′(θ2))]

(36)
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Therefore, the migration result, i.e. the imaging composite equation (15), using the LOIS closed
form is a constant velocity migration of the data set shifted by a quantity as a function of “ z”, i.e.

DLOIS(z, θ) = − 4
ρ0
DPP (z −4zshift, θ)

= 4R0(θ)H(z −4zshift − a) + 4R′1(θ)H(z −4zshift − b′(θ))
(37)

4.4 Analysis on the shifted quantity

Now we will perform some analysis on the above LOIS migration result.
(1) If z ≤ a, then

4zshift ≡ 0. (38)

(2) If a < z ≤ b′(θ1) and z ≤ b′(θ2) , then

4zshift =
2

tan2(θ1)− tan2(θ2)
1

cos2 θ
[(z − a) (R0(θ1)−R0(θ2))] . (39)

(3) If z > a and b′(θ1) < z ≤ b′(θ2) , then

4zshift =
2

tan2(θ1)− tan2(θ2)
1

cos2 θ
[
(z − a) (R0(θ1)−R0(θ2)) + (z − b′(θ1))R′1(θ1)

]
. (40)

(4) If z > a and b′(θ2) < z ≤ b′(θ1) , then

4zshift =
2

tan2(θ1)− tan2(θ2)
1

cos2 θ
[
(z − a) (R0(θ1)−R0(θ2))− (z − b′(θ2))R′1(θ2)

]
. (41)

(5) If z > a, z > b′(θ1) and z > b′(θ2) , then

4zshift =
2

tan2(θ1)− tan2(θ2)
1

cos2 θ
[(z − a) (R0(θ1)−R0(θ2))

+ (z − b′(θ1))R′1(θ1)− (z − b′(θ2))R′1(θ2)].
(42)

Let us check the above shifted quantity for a simple 1D acoustic model with constant velocity,
i.e. c0 = c1 = c2, but varied density. For this model, the reflection and transmission coefficients,
recalling expressions in equation (25) and equation (26), will be simplified ,

R0 =
ρ1 − ρ0

ρ1 + ρ0

R1 =
ρ2 − ρ1

ρ2 + ρ1

T01 = 1−R0

T10 = 1 +R0

(43)
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Notice that the reflection and transmission coefficients are independent of θ. This leads to the
following relation,

R0(θ1) = R0(θ2) R′1(θ1) = R′1(θ2) (44)

Similarly, the pseudo-depth expression of equation (32) becomes,

b′(θ) = a+ (b− a) = b (45)

The pseudo-depth is also independent of θ, and it is equal to the real depth of the 2nd interface,
since the velocities for all three layers are the same in this case and equal to the reference velocity
of the migration.

Therefore, the shifted quantities in the above five cases are all zero, i.e.

4zshift ≡ 0. (46)

This means that for the 1D acoustic model with constant velocity but varied density, the data
set migrated with constant c0 velocity has exactly located all interfaces. This is to be expected,
because all layers in this case have the same correct velocity c0.

What about the case with three different velocities in three layers? From the mathematical ex-
pression of the shifted quantity shown in the above five cases, we can tell the value of the shifted
quantity is actually dependent on the reflection and transmission coefficients at two different in-
cident angles; in other words, when the reference velocity is different from the real velocity, the
ISS LOIS imaging algorithm will use velocity information “buried” in the reflection and transmis-
sion coefficients through their nonlinear communication at two different incident angles, and this
nonlinear communication will be carried on through a depth duration wherever its real velocity is
different from the reference velocity. As discussed in the Appendix of Zhang and Weglein (2005),
the integrand of the shifted quantity is a linear estimate of velocity changes in the media. Therefore,
the more accurate the linear estimate of the velocity changes, the closer the migrated interfaces are
to their real depths.

4.5 Numerical evaluations of the two-parameter ISS LOIS and HOIS imaging
algorithms

For a 1D acoustic model with both density and velocity variation, it is not easy to “interpret” from
the analytic expression of the shifted quantity how well it is locating the real depths. In this sec-
tion, we will do some numerical evaluations on the above three-layer acoustic medium using the ISS
LOIS imaging algorithm expressed in equation (13), and the extended acoustic ISS HOIS imaging
algorithm expressed in equation (18) by varying the values of density and velocity in the models.
First we will demonstrate how sensitive the LOIS imaging algorithm is to the changes of the veloc-
ity parameter, and then we will show the imaging improvement using the HOIS imaging algorithm
by comparing its results with the LOIS results. Further, we will study how sensitive the LOIS
and HOIS imaging algorithms to the changes in the density parameter. Finally, the effect of depth
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duration in the model on the imaging capability of both imaging algorithms will be studied at the
end of this section. We will first fix the two interface depths a = 200m and b = 400m in the models.

In Figure 2, we show a comparison of imaging results between constant velocity migration in
the left most panel and the ISS LOIS imaging algorithm in the middle panel. For the model
we tested, both methods exactly located the 1st interface and mislocated the 2nd interface - the
constant velocity migration method undermigrated the 2nd interface since it assumed a constant
velocity (c0 = 1500m/s) which is less than its real velocity (c1 = 1600m/s) in the 2nd layer, while
the ISS LOIS imaging algorithm overmigrated the 2nd interface although the method also employs
the same constant reference velocity (c0 = 1500m/s) with the former method. Again, this result
indicates that the ISS LOIS imaging algorithm developed from a non-linear series is conceptually
different from the conventional migration method, the constant velocity migration for example,
which originated from a linear imaging world. It is apparent that the ISS LOIS imaging algorithm
pushed its imaged 2nd interface much closer to its real depth than the constant velocity migration
result, especially within the small incident angle range. To show the purposeful perturbation of
the ISS LOIS imaging algorithm, we also present the imaging result of a model with no velocity
changes but only density changes in the right most panel of Figure 2. The result shows that both
interfaces are exactly located, since a correct velocity model (c0 = c1 = c2 = 1500m/s) is provided
in which case the ISS LOIS terms will be zero, and the dataset of constant velocity migration result
has already exactly located the reflectors in the first term of the ISS.
In the following tests we will demonstrate the sensitivity of the ISS LOIS imaging algorithm to the
changes of velocity parameter in the models. In Figure 3, the LOIS result comparison between the
middle two panels shows that the ISS LOIS imaging algorithm used amplitude information from
deeper layers, since the velocities are the same in the first two layers but different in the third layer
- one is faster than the first layer velocity, the other is same with the first layer velocity. It seems
the ISS LOIS imaging algorithm preferrs the latter velocity model. But both results of the LOIS
are better than the constant velocity migration results for locating the 2nd reflector, as can be seen
from the direct comparison among the results in the four panels of Figure 3.
The imaging results in Figure 4 demonstrate that for a velocity model of “slow/faster/same as
1stlayer”, the ISS LOIS imaging algorithm preferrs a larger velocity contrast in the sense of lo-
cating the 2nd reflector, especially within small incident angles. This observation further indicates
that the ISS LOIS imaging algorithm used amplitude information of deeper events. For comparison
purposes, the constant velocity migration result is also put in the Figure.
Figure 5 and Figure 6 show the imaging results for a velocity model of “faster/slower/same as
1stlayer”, in which case the ISS LOIS imaging algorithm shows a weaker imaging capability for a
model with larger velocity contrast than smaller velocity contrast. Again, it demonstrates that the
amplitude information of deeper events is involved in the imaging algorithm.
We mentioned in the previous section that α1 − β1 is a linear estimate of the velocity changes
between the real velocity model and the reference velocity. When there are no velocity changes,
α1 − β1 is zero, and the ISS LOIS imaging algorithm shuts down. The result in the right panel in
Figure 7 demonstrates this key point. To verify this kind of linear estimate of velocity change, the
results of α1 − β1 are also plotted in Figure 7.
Because the ISS LOIS imaging algorithm partially captures the imaging terms in the two-parameter
ISS formalism, it is to be expected that it has a limited imaging capability. The extended ISS HOIS
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Figure 2: Imaging comparison 1: left figure is a result of constant velocity (c0 = 1500m/s) migration,
middle and right figures are results using two-parameter ISS LOIS imaging algorithm, where the
blue dashed lines are the real depths of the two interfaces in the model.

imaging algorithm in equation (18) captures more imaging terms than the LOIS, and it should per-
form better imaging capability. To demonstrate this assumption, a numerical evaluation using the
ISS HOIS imaging algorithm is a good starting point. Figure 8 and Figure 9 show the results of the
ISS HOIS, ISS LOIS and constant velocity migration. For the smaller velocity contrast in Figure
8, the ISS HOIS algorithm almost exactly located the 2nd interface, much better than the other
two methods. For the larger velocity contrast in Figure 9, the ISS HOIS algorithm shows a better
tolerance of velocity contrast than the ISS LOIS and constant velocity migration method.
To demonstrate how sensitive both ISS LOIS and ISS HOIS algorithms are to the changes in
the density parameter, Figure 10 and Figure 11 show that the ISS HOIS imaging algorithm
is much less affected by the density changes than the ISS LOIS, for the certain velocity model
(“slower/faster/faster”).
At the end of this section, we present a study to show how sensitive both LOIS and HOIS imaging
algorithms will be to the depth duration in the model. The results are shown in Figure 12 where
the 1st interface depth is fixed at a = 75m, but the 2nd interface is varied depth from b = 150m
to b = 400m. From the plotted results, we observe that the ISS HOIS imaging algorithm is more
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Figure 3: Imaging comparison 2: the outer two figures are the results of constant velocity (c0 = 1500m/s)
migration, the inner two figures are the corresponding results using two-parameter ISS LOIS
imaging algorithm, where the blue dashed lines are the real depths of the two interfaces in the
model.

robust to the bigger depth duration than the ISS LOIS imaging algorithm, for the considered
velocity and density configuration.

5 Conclusion and discussion

In this report we first reviewed the ISS LOIS imaging algorithm for a two-paramter acoustic
medium and some extended 1D and multi-D ISS LOIS and ISS HOIS imaging algorithms which
were reported at the last M-OSRP’s annual meeting. Secondly, we presented a 1D analytic exam-
ple to test and demonstrate the effectiveness of the 1D acoustic two-parameter ISS LOIS and ISS
HOIS imaging algorithms expressed in equation (13) and equation (18), respectively. Both analytic
analysis and numerical evaluations show that both algorithms use amplitude information of seismic
events through a nonlinear communication at different incident angles to estimate the real velocity
information in the model. The ISS LOIS algorithm indicates a tendency to use amplitude informa-
tion of deeper events, and shows weaker imaging capability than the ISS HOIS imaging algorithm
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Figure 4: Imaging comparison 3: left figure is a result of constant velocity (c0 = 1500m/s) migration,
middle and right figures are results using two-parameter ISS LOIS imaging algorithm, where the
blue dashed lines are the real depths of the two interfaces in the model.

in the situations of bigger velocity contrast, density changes and depth duration of the model.
The ISS HOIS results for a bigger velocity contrast model show the necessity of capturing more
imaging terms in the ISS formalism to correctly locate deeper reflectors. Density variation plays an
important role in a model with velocity variation, especially for the ISS LOIS algorithm. Further
work is needed to study density variation in the toolbox of multiparameter imaging algorithms.

Through the analytic calculation and tests presented in this report, we can observe that the am-
plitude information of dataset is used for linearly estimating the velocity change between the real
velocity model and the reference velocity model which can be constant value. Since in a two-
parameter acoustic medium, density is also an element which can affect amplitude, it is fair and
important to conclude that density plays a very important role in multiparameter imaging using
the ISS. We can expect that the extended multiparameter elastic imaging algorithms will use ampli-
tude information from elastic datasets where more parameters can change and affect the amplitude
information. Hence, linear inversion of the parameters in elastic medium is becoming extremely
important for providing a “proper” input of the linear estimate of velocity change to the imaging
depth correction term. In elastic medium, multi-component datasets will be studied for the linear
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Figure 5: Imaging comparison 4: right figure is a result of constant velocity (c0 = 1600m/s) migration, left
figure is the result using two-parameter ISS LOIS imaging algorithm, where the blue dashed lines
are the real depths of the two interfaces in the model.

inversion of the parameters.

Synthetic data tests of the 1D two-parameter acoustic ISS LOIS and ISS HOIS imaging algo-
rithms are in progress. Future plans are: (1) synthetic tests of the extended multi-D multipa-
rameter acoustic ISS HOIS imaging algorithm; (2) Analytic and synthetic tests of the extended
1D multiparameter elastic ISS HOIS using single PP dataset prepared in Jiang et al. (2007) and
multi-component dataset; (3) multi-D multiparameter elastic ISS HOIS.
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Figure 6: Imaging comparison 5: both figures are results using two-parameter ISS LOIS imaging algorithm,
where the blue dashed lines are the real depths of the two interfaces in the model.
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Figure 9: Imaging comparison 7: right figure is a result of constant velocity (c0 = 1500m/s) migration,
middle and left figures are results using two-parameter ISS LOIS and HOIS imaging algorithms,
respectively, where the yellow dashed lines are the real depths of the two interfaces in the model.
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Figure 10: The sensitivity of density changes to the result of the two-parameter ISS LOIS imaging algo-
rithm: velocity model keeps same in all models. The yellow dashed lines are the real depths of
the two interfaces in the model.
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Figure 11: The sensitivity of density changes to the result of the two-parameter ISS HOIS imaging algo-
rithm: velocity model keeps same in all models. The yellow dashed lines are the real depths of
the two interfaces in the model.
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Figure 12: Effect of depth duration changes to the results of constant velocity migration and the two-
parameter ISS LOIS/HOIS imaging algorithms: for all models,density and velocity values are
same in each layer. The yellow dashed lines are the real depths of the two interfaces.
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Depth imaging without the velocity cares about the phase and
amplitude information of events: focusing on the use of the angle
dependent amplitude information of events

X. Li, F. Liu, S. Jiang and A. B. Weglein, M-OSRP, University of Houston

Abstract

Depth imaging through a complicated geologic overburden is an important and long standing
challenge in exploration seismology. Based on inverse scattering theory, the subseries for imaging
without the velocity (Weglein et al., 2003) has the potential for directly producing an image of
the earth using only the recorded data. A conjectured multiparameter imaging algorithm was
proposed by Weglein in 2007, extending the single-parameter imaging series algorithms of Shaw
et al. (2004) and Liu et al. (2005).

The input to inverse scattering series (ISS) depth imaging algorithms correctly pre-processed
amplitudes of events and phases of events. In this report, we focus on the use of angle dependent
event amplitudes. By combining amplitudes at appropriate incidence angles, we propose a
framework to prepare the linear estimate of the velocity change, (α1 − β1), for the conjectured
imaging algorithm for a 1D 2-parameter acoustic medium (velocity and density variation). Three
analytic examples (layered medium with velocity variation only, with density variation only and
with both velocity and density variation) were tested and analyzed. From the analytic results,
we examined how density changes affect the linear estimate of the velocity change. Finally, also
included are the initial imaging results for the reflection coefficient for analytic example, which,
importantly preserves zero crossing and signs. Avoiding the loss of zero crossing information
marks an improvement on current standard processing, which involves ironing common image
gathers.

1 Introduction

In this report, I primarily focus on including certain reflections and excluding others which is one
aspect within the project of the multi-parameter imaging effort. And in Shansong jiang’s 2008
annual report, he focuses on another aspect of using the included reflections for the purpose of
direct depth imaging without subsurface information. At this early stage, there are some expected
overlap of activity and certain important distinct contributions in these two reports. When seeking
goals within the elastic application and field data tests, these two aspects will require further serious
concept development, and will be separately advanced and then coupled to address challenges.

For conventional imaging, people locate reflectors at depth using seismic reflection, taking advan-
tage of both the arrival time of the events and the velocity field obtained from velocity analysis.
With current data acquisitions which often miss small and cross-line offsets measurements and low
frequency information, those imaging algorithms manage to provide satisfactory results for most
cases. However, for cases like sub-salt imaging, where the velocity analysis has difficulties, the
performance of those velocity dependent migration procedures will be affected.
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The ISS has the potential to achieve all processing goals directly in terms of recorded data, and
without any need, in principle or practice, to provide any subsurface information. Velocity inde-
pendent imaging algorithm derived from the ISS is capable of using the amplitude information of
the data as well as the arrival time. The inverse scattering series has given results which indicate
that it is a good framework for doing imaging and inversion without a velocity model.

Since the announced goal of using the inverse scattering series for simply locating reflectors at their
correct spatial location without knowing any subsurface properties including velocity, it was natural
and reasonable to begin with an earth model that only allowed variation in velocity. Pioneering
works (Weglein et al., 2000, 2001, 2002; Shaw et al., 2004, 2003; Shaw and Weglein, 2003; Innanen,
2005) have been done on a 1D one parameter medium (with only velocity varying) and seek to depth
locate structure without knowing or determining the velocity model. The first step of performing
imaging without the velocity is to obtain α1(z) which is very close to the Stolt migration result
using reference medium velocity (Stolt, 1978). More terms of the inverse scattering series have been
identified to improve the locations of the reflectors in α1. So far, there are two closed forms of the
imaging sub-series known as the leading order imaging series (LOIS) (Shaw et al., 2003) and the
higher order imaging series (HOIS)(Liu, 2006).

αLOIS(z) = α1(z −
1
2

∫ z

0
α1(z′)dz′); (1)

αHOIS(z +
1
2

∫ z

0

α1(z′)
1− 1

4α(z′)
dz′) = α1(z). (2)

Compared to α1, these two functions provide better spatial locations. In the one parameter world,
for an actual medium with changing velocity, there is an issue of mislocating the deeper reflectors.
In the imaging-only terms, for example, −1

2
dα1(z)

dz

∫ z
−∞ α1(z′)dz′, the attention needing term (the

derivative part in imaging-only terms) lights up and the attention providing term (the integral part
in imaging-only terms) acts to correct for the right location; for an actual medium with a constant
velocity, if the reference velocity is selected to be the same as the waves in the background medium,
the attention providing term will automatically shut down. That means the imaging algorithm is
not attempting to correct for an issue that does not exist.

However, generally speaking, rapid changes in density is as common as rapid changes in velocity.
In traditional seismic imaging the assumption is that we can determine an adequate velocity. If
the velocity configuration is achievable, and the goal is a structure map, then thinking (and then
worrying) about additional subsurface properties such as density are unnecessary unless you want
location and inversion at depth, in which case all overburden properties are relevant and required.
But what about the ISS? What will happen when velocity changes? Or density changes? Or
both velocity and density change? LOIS and HOIS were challenged when there is not only density
change. So we need a multi-parameter ISS to study how the depth imaging task is performed in
this more realistic and much more complicated earth.

A conjectured imaging algorithm was proposed by Weglein, which has similar logic to that in the
LOIS and HOIS algorithms. Further, for a 1D 2-parameter acoustic medium, higher order imaging-
only terms has been calculated and captured to justify the conjectured imaging algorithm (Jiang
and Weglein, 2007). For multiparameter imaging, the first step is to obtain α1− β1 as a composite
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for the ISS imaging algorithm. In the following section, we will present how to find α1−β1 from the
angle dependent amplitude information for a 1D 2-parameter acoustic medium. Further analysis
about this framework will be shown as well.

In the last section, we will present the initial imaging results on polarity reversals in reflections
from layered acoustic media, aimed towards type 1 and type 2 AVO applications.

2 Extended imaging algorithm

The ISS imaging algorithm has been extended to multiparameter case for both acoustic and elastic
media. Let us consider a 1D 2-parameter acoustic earth model (e.g. bulk modulus and density
or velocity and density). Starting with the 3D acoustic wave equations for reference and actual
medium,

[
ω2

K0(r)
+∇ · 1

ρ0(r)
∇]G0(r, rs;ω) = δ(r− rs), (3)

[
ω2

K(r)
+∇ · 1

ρ(r)
∇]G(r, rs;ω) = δ(r− rs). (4)

where G0 and G are the reference and actual Green’s functions respectively. K = c2ρ, is P-bulk
modulus, c is P-wave velocity and ρ is density. The subscript 0 represents those variables in the
reference medium.

The perturbation is

V = L0 − L =
ω2α

K0
+∇ · β

ρ0
∇, (5)

where α = 1− K0
K and β = 1− ρ0

ρ are the two parameters we are going to use. V (z,∇), α(z) and
β(z) can be expanded in terms of recorded data (Weglein et al., 2003) respectively as

V (z,∇) = V1(z,∇) + V2(z,∇) + · · · , (6)

α(z) = α1(z) + α2(z) + · · · , (7)

β(z) = β1(z) + β2(z) + · · · . (8)

Based on inverse scattering series, the second order approximation for the parameters was calculated
in Zhang and Weglein 2005 for a layered acoustic media with both velocity and density changes,
the imaging-only term in this 2nd term was identified as:

−1
2

1
cos2 θ

[
1

cos2 θ
α′1(z) + (1− tan2 θ)β′1(z)]

∫ z

−∞
[α1(z′)− β1(z′)]dz′, (9)

Substituting α1(z) of one parameter case shown in Eq.(2) with α1(z) − β1(z) of multiparameter
case, we have the conjectured imaging algorithm for the latter one as

DHOIS(z +
∫ z

−∞

[α1(z′)− β1(z′)]dz′

cos2 θ − 0.25 · [α1(z′)− β1(z′)]
, θ) = D(z, θ).
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In the conjectured imaging algorithm, the two parameters (velocity and density) will be imaged
as a composite form, which means instead of distinguishing the details of the changed information
(velocity change or density change), the imaging task recognizes them as a combined form linear
in the recorded data. In other words, no matter what changes across the reflectors, the needing
attention term will light up and the providing attention term will correct the depth structure if
needed. The next step is to preprocess the amplitude information for α1 − β1 that is needed.

3 Analytic examples

3.1 The use of angle dependent amplitude for (∆v
v

)1

Considering a model that consists of two horizontal interfaces at depths a and b, with a discontinuous
velocity profile c0, c1 and c2. Above the first interface is the reference medium, and below is the
actual medium.

The wavefield above the first interface consists of an incident field Ψi and a reflected field Ψr.
The measured reflected wavefield can be derived by decomposing the incident field into a sum of
plane waves (the Sommerfeld integral) and then matching boundary conditions at each interface.
Suppose the source and receiver locate at z = 0, then

Ψr(r; qg) =
∫ ∞

0

1
4πiqg

(R01(θ)e2iqga +R′12(θ)e
2iqgb′)J0(kr)kdk. (10)

where qg =
√

ω2

c20
− k2. The reflection coefficients from the first and second reflectors are functions

of angle and are respectively given by

R01(θ) =
(c1/c0)

√
1− sin2 θ −

√
1− (c21/c

2
0) sin2 θ

(c1/c0)
√

1− sin2 θ +
√

1− (c21/c
2
0) sin2 θ

. (11)

and
R′12 = T01R12T10

where T01 = 1 + R01 and T10 = 2 − T01 are also functions of angle. With these coefficients, data
may be expressed analytically in the qg domain as:

D̃(qg, θ) = R01(θ)
e2iqga

4πiqg
+R′12(θ)

e2iqgb′

4πiqg
. (12)

Fourier transforming over 2qg, we have

D(z, θ) = R01(θ)H(z − a) +R′12(θ)H(z − b′). (13)

At a fixed θ, we have (Zhang, 2006)

1
cos2 θ

α1(z) + (1− tan2 θ)β1(z) = 4R01(θ)H(z − a) + 4R′12(θ)H(z − b′). (14)
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From Eq.(14), choosing two different angles to solve for α1 − β1

(α1 − β1)(z, θ1, θ2) =
4

tan2θ2 − tan2θ1
[R0(θ1)−R0(θ2)]H(z − a)

+
4

tan2θ2 − tan2θ1
[R′1(θ1)H(z − b′(θ1))−R′1(θ2)H(z − b′(θ2))] (15)

where b′(θ) = a+ (b− a)C0

√
1−C2

1p2

C1

√
1−C2

0p2
and sin θ

C0
= p.

Now that we have α1 − β1, we can do depth imaging through the conjectured imaging algorithm.
But the problem is how should we use the angle dependent amplitude information to obtain α1−β1?
Although α and β which are related to the medium properties, are not functions of angle, α1, β1

and α1−β1 should be functions of angle. In other words, different framework of using the amplitude
information will in consequence produce different imaging results. So, what data combination do
we need to find α1 − β1? In this report, for each (α1 − β1)(z, θ1, θ2) in Eq.15, θ1 and θ2 were
picked to be very close to each other. There are two reasons: 1) the deeper information should
not contribute to correcting the location of the shallower reflector. If the angles we pick are close
enough, we can avoid data from deeper depths talking to data from shallower depths; 2) the angle
outside the integral will be easy to choose. Because the two angles are so close that no matter
which one of them we choose will provide very close output.

3.2 Analytic Results

Here we study the simplest example of two reflectors for 1D acoustic medium, where the velocity
and density for the reference are known.

In the following, three specific models were studied for the imaging conjecture. Figure 1 shows the
constant velocity model, Figure 5 shows the constant density model and Figure 9 shows the model
in which both velocity and density change. In each case, the water bottom is well located, and in
all the pictures of D(z) (which means water speed migration, the output is reflectivity), the blue
lines represent the correct location of the second reflector, and the red lines in all the pictures of
HOIS of D(z) show the same thing.

4 Discussion

4.1 Density changes affect (∆v
v

)1

Model 2 and model 3 have the same velocity change but different density changes, and the imaging
results for model 3 is better, which lead us to question how does density change influence the linear
estimation of velocity change? When we choose two different angles to solve for α1 − β1:

α1 − β1 =
R(θ1)−R(θ2)

tan2 θ1 − tan2 θ2
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Figure 1: Model 1

θ

z

Figure 2: α1 − β1 for model 1. θ1 is fixed to 0, while
θ2 is changing. In this constant velocity
case, α1 − β1 is zero, which means the re-
flectors are well located, and the attention
providing term shuts down.

θ

z

Figure 3: Data before HOIS

θ

z

Figure 4: Data after HOIS
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Figure 5: The second model
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Figure 6: α1 − β1 for model 2. θ1 is fixed to 0, while
θ2 is changing.

θ

z

Figure 7: Data before HOIS

θ

z

Figure 8: Data after HOIS

and,

R(θ) =
ρ1c1(θ)− ρ0c0(θ)
ρ1c1(θ) + ρ0c0(θ)

=
ρ1

ρ0
c1(θ)− c0(θ)

ρ1

ρ0
c1(θ) + c0(θ)
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Figure 9: The third model
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Figure 10: α1−β1 for model 3. θ1 is fixed to 0, while
θ2 is changing.
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Figure 11: Data before HOIS

θ

z

Figure 12: Data after HOIS

= 1− 2c0(θ)
ρ1

ρ0
c1(θ) + c0(θ)
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where c0(θ) = c0/
√

1− sin2 θ, c1(θ) = c1/

√
1− c21

c20
sin2 θ.

(α1 − β1) = (2
c0(θ2)

ρ1

ρ0
c1(θ2) + c0(θ2)

− 2
c0(θ1)

ρ1

ρ0
c1(θ1) + c0(θ1)

)/(tan2 θ1 − tan2 θ2)

= 2
c0(θ2)c1(θ1)− c0(θ1)c1(θ2)

tan2 θ1 − tan2 θ2

× 1
ρ1

ρ0
c1(θ1)c1(θ2) + ρ0

ρ1
c0(θ1)c0(θ2) + c1(θ1)c0(θ2) + c0(θ1)c1(θ2)

. (16)

In order to study how density changes affect α1 − β1 under a certain ratio of velocity changes, we
should take a close look at the part of the above formula involving density:

ρ1

ρ0
c1(θ1)c1(θ2) +

ρ0

ρ1
c0(θ1)c0(θ2).

Assuming the density of the medium in the second layer changes from ρ1 to ρ′1, the change of the
part involving density is as follows:

ρ′1
ρ0
c1(θ1)c1(θ2) +

ρ0

ρ′1
c0(θ1)c0(θ2)− (

ρ1

ρ0
c1(θ1)c1(θ2) +

ρ0

ρ1
c0(θ1)c0(θ2))

=
(ρ′1 − ρ1)

ρ0
[c1(θ1)c1(θ2)−

ρ2
0

ρ1ρ′1
c0(θ1)c0(θ2)].

Let us go to some details:
1. When c1 > c0 and θ2 > θ1, the first term (please see Appendix A for details)

c0(θ2)c1(θ1)− c0(θ1)c1(θ2)
tan2 θ1 − tan2 θ2

> 0.

In the case of ρ1 > ρ0, the bigger the density contrast (ρ′1 > ρ1), the smaller the second term. Then
the value of α1 − β1 is smaller;
In the case of ρ1 < ρ0, when the density contrast is increasing (ρ′1 < ρ1), and if [c1(θ1)c1(θ2) −

ρ2
0

ρ1ρ′1
c0(θ1)c0(θ2)] < 0, the value of α1 − β1 will be also smaller, otherwise, it is larger.

2. When c1 < c0 and θ2 > θ1,

c0(θ2)c1(θ1)− c0(θ1)c1(θ2)
tan2 θ1 − tan2 θ2

< 0,

In the case of ρ1 > ρ0, when the contrast of the density is bigger (ρ′1 > ρ1), and if [c1(θ1)c1(θ2) −
ρ2
0

ρ1ρ′1
c0(θ1)c0(θ2)] > 0, the smaller the second term, thus, the value of α1 − β1 is smaller, otherwise,

it is bigger.
In the case of ρ1 < ρ0, the bigger the contrast of the density (ρ′1 < ρ1), the smaller the value of
α1 − β1.
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4.2 A clean separation of density contribution

In Eq.(14), when we find α1−β1 by combining amplitudes of two angles that are very close to each
other, it is in some sense obtaining the derivative with respect to θ. Since α1 − β1 is the linear
estimation of the velocity change, it inspires us to think of separating the velocity and density
contributions through data and its derivatives. For example, in the simplest one reflector case,
starting from the shifting term of HOIS for one parameter, and α1 = 4R

shift =
1
2

α1

cos2 θ − 1
4α1

=
2R

cos2 θ −R

where R is the reflection coefficient, and R = I1−I0
I1+I0

, I0 and I1 are the impedances for the first and
second medium respectively, we have

shift =
2(I1 − I0)/(I1 + I0)

cos2 θ − (I1 − I0)/(I1 + I0)
(17)

Solving for I1
I0

and defining function f ≡ I1
I0

, we have

f ≡ I1
I0

=
2 + (1 + cos2 θ) · shift

2 + sin2 θ · shift
(18)

where the function f is simply a function of the impedances. In the two parameter world, assuming
f stays the same as in Eq.(18) which is a combination of data, and we also have

f =
I1
I0

=
ρ1

ρ0

c1/
√

1− c21p
2

c0/
√

1− c20p
2
. (19)

where p = sin θ
c0

.
Define u = p2 and another function G,

G(u, v) = ln(
f2(u)
f2(v)

) = ln(
1− c20u

1− c21u
· 1− c20v

1− c21v
) (20)

= ln(1− c20u)− ln(1− c21u) + ln(1− c21v)− ln(1− c20v). (21)

we have ∂G
∂u = 1

c−2
1 −u

− 1
c−2
0 −u

and ∂2G
∂u2 = 1

(c−2
1 −u)2

− 1
(c−2

0 −u)2
, then

(
G′′

G′
−G′)|u = 2

1
c−2
0 − u

;

(
G′′

G′
+G′)|u = 2

1
c−2
1 − u

;

So we can express the velocity related part as:√
c−2
0 − u√
c−2
1 − u

=

√
G′′

G′ +G′

G′′

G′ −G′
. (22)
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We would like to change the above expression in terms of the function f(u) which is the data
combination that corresponds to only one angle, as we can easily compute,

G′|u =
2f ′

f
;

G′′|u = 2
f ′′f − (f ′)2

f2
;

It is obvious that we have √
c−2
0 − u√
c−2
1 − u

=

√
f ′′f + f ′f ′

f ′′f − 3f ′f ′
. (23)

which indicates that if we can measure the derivative of the data with respect to angle, we can
separate the contribution of the velocity and density.

5 Polarity reversal in a reflection from an acoustic interface

In this section, we study the polarity reversal in reflection from an acoustic interface in layered
medium. Investigating polarity reversals in seismic reflection is a very important issue. Because
they provide information of a very important type of AVO, and since multiplication by zero yields
zero, they are insensitive to many of the extraneous factors that affect amplitude variations with
offset.

As studied by Keys (1988), a polarity reversal in a reflection from an acoustic interface occurs
when an increase in the acoustic impedance across the interface is accompanied by a decrease
in the P-wave velocity. The imaging results are studied for the analytic model as follows: c0 =
1500m/s, ρ0 = 1.0g/cm3, c1 = 1600m/s, ρ1 = 1.1g/cm3, c2 = 1200m/s, ρ2 = 1.5g/cm3. Figure
13 shows ∂D

∂z before HOIS. In this model, the amplitude is a function of angle and changes from
positive to negative when the angle increases. The red line represents the correct location, and it
is clear that the second reflector is mislocated. We have an enlarged picture on the right about the
detailed information. (In all the pictures, we only keep the information for the second reflector in
the picture to see better.)

Figure 14 shows ∂D
∂z after HOIS. Because the reflector is moved almost to the correct location, it

is difficult to see the amplitude information in this picture. On the right hand side, there is an
enlarged picture displaying the detail of the polarity reversal information. In Figure 15, we extract
the information of amplitude changing with angle, from which we can see a small transmission
difference between the real reflection coefficient and the ∂D

∂z output by imaging conjecture.

6 Conclusion and Future plan

In this report, we focused on the use of angle dependent amplitude information of events and let
data from different angle talk to each other. The framework found analytically for α1 − β1 for a
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Figure 13: ∂D
∂z before HOIS. On the right side, there is an enlarged picture displaying in detail of the
polarity reversal information. z = 100 is the correct location of the second reflector and zero
crossing happens when θ = 16.7
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Figure 14: ∂D
∂z after HOIS. On the right side, is the enlarged picture as in Figure 13.

1D 2-parameter acoustic medium (velocity and density distribution) is very favorable. It provides
an insightful analysis that can be applied to the concepts and algorithms of the inverse scattering
series. A detailed explanation was provided on how density changes affect α1 − β1 when other
properties stay the same. In the end, a simple analytic study has been done on reflection coefficient
preserving zero crossing and signs when going through an overburden, which has significant meaning
in AVO. Next, we are going to find the framework for α1−β1 from PP data, and extend to PP plus
synthesized PS and SS data in the elastic case. Meanwhile, polarity reversal tests will be extended
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Figure 15: ∂D
∂z and real reflection coefficient vs. angle

to finite difference data and more complex models.
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Appendix A

The detailed calculation of the first term in Eq. (16)

c0(θ2)c1(θ1)− c0(θ1)c1(θ2)
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=
c0√

1− sin2 θ2

c1√
1− c21

c20
sin2 θ1

− c0√
1− sin2 θ1

c1√
1− c21

c20
sin2 θ1

= c0c1[
1√

(1− sin2 θ2)(1−
c21
c20

sin2 θ1)
− 1√

(1− sin2 θ1)(1−
c21
c20

sin2 θ2)
];

Since the two square root should be bigger than zero, we can just compare the terms inside, thus,
we have

[1− c21
c20

sin2 θ1 − sin2 θ2 +
c21
c20

sin2 θ1 sin2 θ2]− [1− c21
c20

sin2 θ2 − sin2 θ1 +
c21
c20

sin2 θ1 sin2 θ2]

= −c
2
1

c20
sin2 θ1 − sin2 θ2 +

c21
c20

sin2 θ2 + sin2 θ1

= (
c21
c20
− 1)(sin2 θ2 − sin2 θ1);

So, when c1 > c0 and θ2 > θ1, c0(θ2)c1(θ1)− c0(θ1)c1(θ2) < 0;
and when c1 < c0 and θ2 > θ1, c0(θ2)c1(θ1)− c0(θ1)c1(θ2) > 0.
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Inverse scattering series velocity dependent imaging in laterally
varying media: analysis of transcendental integrals in the
mathematics of multidimensional imaging

F. Liu and A. B. Weglein, M-OSRP, University of Houston

Abstract

M-OSRP research is being conducted to prepare a field-data ready direct nonlinear depth imag-
ing algorithm. In this volume, research is reported towards preparing the imaging algorithm
for primaries reflecting from multiparameter, multidimensional media. Here we focus on is-
sues related to the second of these aspects, i.e, imaging in multidimensional media, extending
previous work on single-parameter leading- and higher-order imaging subseries of the inverse
scattering series. In previously reported work, the analytically computable portion of the mul-
tidimensional imaging subseries had been separated and grouped into a closed form algorithm
(the higher-order imaging subseries, HOIS), with encouraging numerical results. The remaining
terms, which were not immediately analytically expressible, were examined through numerical
approximations, but so far largely left out of our imaging algorithms. In this report, we focus on
the mathematics of this part of the imaging subseries. The issue is that the integrals to be cal-
culated in these terms are highly transcendental. To manage this, a systematic scheme capable
of computing such integrals with arbitrary accuracy has been developed, as has a rapid means
of calculating them based on Fast Fourier transforms. Further, in the course of our analysis
we have (1) made new use of symmetries in the reference Green’s operator, and (2) produced
polynomial approximations for some of the transcendental functions that we expect to be of use
for later incorporation in closed-form versions of multidimensional imaging. Numerical testing
of these calculations show encouraging results, especially on diffraction artifacts associated with
rapid lateral variations.

1 Introduction

In this paper we describe progress on the mathematics and numerics of multidimensional velocity
independent imaging. The bulk of this report is devoted to deriving new analytic methods for
calculating rapidly varying integrands in the non-linear parts of the imaging subseries. Following
that, we provide numerical examples of a second aspect of this past year’s research: a large kz

method for constructing the linear imaging result (i.e., the input to the velocity independent imag-
ing algorithm). We demonstrate the improvement such results bring to our pre-existing imaging
algorithm (HOIS) output.

First, some background. Rapid lateral variations are among the biggest challenges in seismic
imaging, for example, sub-salt or sub-basalt targets, karstic formations, structures in foreland
basins, etc. Rapid lateral variation is not only a significant impediment for many velocity analysis
procedures to achieve a working velocity field, but also a formidable barrier for numerous leading-
edge imaging algorithms to propagate through. In M-OSRP’s coordinated efforts for the field data
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application of velocity independent imaging algorithms, this article targets specifically the lateral
variation aspect of the seismic imaging algorithm. Several closely related reports are also included
in this volume, for example, Jiang et al. and Li et al. concentrate on the multiparameter aspect of
the seismic imaging challenge; Lira et al. focus on the issues of absorption; Wang et al. consider
the limited aperture in the real data; Mayhan et al., Hsu et al., and Wang et al. discuss many
prerequisites to estimate the wavelet and remove direct waves, ghosts, and multiples from the input
data.

After the pioneering work in Weglein et al. (2000, 2002), the seismic imaging subseries had been
studied in many aspects; much fruitful research efforts had been subsequently presented to our
sponsors, for example Shaw et al. (2003); Innanen (2003); Shaw (2005).

Targeting lateral variations specifically, this article is a direct continuation of the inverse scattering
imaging work in Liu (2006); Liu and Weglein (2007). In our previous work, the portion of the
seismic imaging operator which is analytically computable was separated and grouped into the
higher-order imaging subseries (HOIS) with encouraging numerical results. However, the part
that has no analytic expression was either approximated by discrete summation in a truncated
manner, or left out entirely in the computational scheme. This article focuses on this aspect of the
seismic imaging algorithm, or in the terminology of mathematics, the seismic imaging capability
encapsulated in highly transcendental functions.

The complication of lateral variation on seismic imaging is significant in the inverse scattering series:
If we assume a 1D earth, as demonstrated in section §2.5, the only horizontal wavenumber that
matters is km = 0, and consequently the integral over the temporal frequency ω (or equivalently
over the vertical wavenumber kz) is always a Dirac δ-function (or its derivative). The integration
over a δ-function is very easy to implement: it needs only a single isolated sample of data (or its
derivative) at the exact grid point due to the sifting property of the δ-function. If the 1D earth
assumption is removed, non-zero km will have to be considered. In this case, the integration over
kz will no longer result in a clean δ-function. Our approach is to decompose it into two parts: the
first part leads to a linear combination of derivatives of the δ-function of various orders; the second
part is a Riemann integral, which in the simplest scenario reduces to many formidable examples of
“highly transcendental functions” in Arthur Erdélyi and Bateman (1954).

Every term in the first part, for example equation (90), is a Dirac δ-function (or its derivative); its
integral over data is very easy to calculate, just like the 1D case. Partial derivatives over the lateral
variable x (for example equation (2.25) from Liu (2006)) also appeared, but the overall algorithm
shares the same simplicity and lightning speed with its 1D counterparts.

The Riemann integrals in the second part, e.g equation (93), however, turn out to be fast changing
functions of depth z; both the magnitude and the frequency of the variation increase with z and
km. Significant amount of research has been devoted to the calculation and interpolation of this

type of integral, which we tackle with a two-interval scheme: (1) the first part
Ξ∫
0

dkz is accurately

implemented by interpolations with the help of various derivatives (with respect to kz) of the
integrand; a fast implementation of this interpolation using a discrete Fourier transform is derived

and applied in the calculation; (2) the second part
∞∫
Ξ

is accurately implemented with asymptotic
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expansion to thousand of terms (each expansion by itself contains thousands of terms).

So far the seismic imaging operators have been coded for α1 with very limited km range (about 10%).
Encouraging numerical tests applied to the geological models with various degree of lateral variation
have demonstrated the consistent benefit of an accurate seismic imaging operator, especially dealing
with phenomena associated with lateral variations, e.g, diffractions.

1.1 Notation and conventions

It is worthwhile to provide a summary of the notations and conventions for Fourier transforms.

• The symbol i is reserved for the imaginary unit which satisfies i2 = −1. c0 is reserved for the
homogeneous reference (or migration) velocity.

• In this article, we use the symbol
4
= to initiate a definition in an equation. For example,

a
4
=sin(6) means that the definition of a is sin(6).

• In this article, the symbol “˜” is extensively used above the name of a function to denote
its Fourier transform.

• The superscript symbol T is reserved for the transpose of a matrix or vector. All matrices are
denoted by bold capitals, for examples M and Λ. The superscript symbol ∗ is reserved for
the conjugate of a complex number.

Square-roots are used extensively in this note, and it is well-known that the square-root of a number
is not unique. For example, both 3 and −3 are valid square-root of 9. In summary,

• We use ?
√ to denote the square-root of a real number, which can be positive or negative. We

use ?
√ to emphasize the fact that we have not decided which answer to choose. For example,

?
√

9 can be 3 or −3, and ?
√
−9 can be 3i or −3i.

• In this article, the symbol √ is reserved for the non-negative square-root of a non-negative
real number. In these cases we force √ to be a single-valued function. For example,

√
9 = 3,

and
√
−9 is not defined.

We use t to denote time and ω to denote its Fourier conjugate (temporal frequency). The Fourier
transform of a function f(t) in the time domain into its spectrum in the frequency domain is defined
as,

f̃(ω) =

∞∫
−∞

f(t)eiωtdt. (1)

The corresponding inverse Fourier transform is defined as,

f(t) =
1
2π

∞∫
−∞

f̃(ω)e−iωtdω. (2)
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We use z to denote depth (the vertical coordinate); its Fourier conjugate is denoted as vertical
wavenumber kz. The forward and inverse Fourier transform between z and kz are respectively
defined as,

f̃(kz) =

∞∫
−∞

f(z)eikzzdz , f(z) =
1
2π

∞∫
−∞

f̃(kz)e−ikzzdkz. (3)

On the other hand, the Fourier transform between ~x (the horizontal coordinate1) and ~km (the
horizontal wavenumber2) is defined with a different sign convention,

f̃(~km)
4
=
~∫
f(~x)e−i~km•~xd~x , f(~x)

4
=

{
1
2π
~∫ f̃(~km)ei~km•~xd~km, (2D Seismic)

1
4π2

~∫ f̃(~km)ei~km•~xd~km, (3D Seismic)
. (4)

In equation (4), we use ~
∫

to denote the integration over the entire vector space of all lateral variables
(or lateral wavenumbers). Its definitions in 2D seismic and 3D seismic are listed below,

~∫ d~x =
∞∫
−∞

dx (2D Seismic),

~∫ d~x =
∞∫
−∞

∞∫
−∞

dxdy (3D Seismic).
(5)

In this note a vector will be denoted by a symbol topped with~. To be consistent with our previous
notations, the modulus of the vector will be denoted by the symbol without~,

km =
∣∣∣~km

∣∣∣ , k1 =
∣∣∣~k1

∣∣∣ . (6)

In this article, since the seismic imaging operators are the same in 2D and 3D, we describe both of
them in the same context. The few differences between 2D and 3D will be mentioned explicitly.

1.2 Seismic imaging operators

In this article, the term “seismic imaging operator” is used extensively. It is worthwhile to
clarify its meaning in the context. In the seismic imaging subseries, the output image for every
term is calculated via an integral whose integrand is the product of the input data and a kernel
function. We call this kernel function the seismic imaging operator of this term, as expressed in
equation (7),

Image =
∫

Data ∗Kernel. (7)

1In 2D seismic, ~x is defined as a single horizontal variable: x. In 3D seismic, ~x is defined as a vector with two
components: x and y.

2In 2D seismic, ~km is defined as a single horizontal wavenumber: km. In 3D seismic, ~km is defined as a vector
with two components: kmx and kmy.
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The useful integration operators in the inverse scattering series are usually not ordinary continuous
functions; for example, the Dirac δ-function or various types of Green’s functions are used in the
inverse scattering series (Weglein et al., 2003, equations 1 and 2). They were chosen because they
best describe the principle of superposition, and their behavior inside an integral has been rigorously
defined, regardless of the difficulty in defining them in the ordinary sense.

1.3 Examples of seismic imaging operators

In the inverse scattering series, Green’s function, for example, equation (64) from Weglein et al.
(2003), equation (A-2) from Shaw et al. (2003), equation (2.9) from Liu (2006), or equation (17)
from Liu and Weglein (2007), are all expressed in the ω (frequency) domain. Consequently, the
corresponding imaging results, for example, equation (B-5) from Shaw et al. (2003), equation (A.25)
from Liu (2006), and equation (66) from Liu and Weglein (2007), are all expressed in the ω (or
equivalently, vertical wavenumber kz) domain. An inverse Fourier transform needs to be applied
to convert the result into the depth domain, for example, equation (B-6) from Shaw et al. (2003),
equation (A.26) from Liu (2006), equation (67) from Liu and Weglein (2007). This inverse Fourier
transform over kz, if rearranged to be the innermost integral and applied first, will lead to a
distribution independent of the data, for example, equation (A.29) from Liu (2006), equation (70)
from Liu and Weglein (2007). These distributions are examples of seismic imaging operators.

Seismic imaging operators have several advantages: (1) They do not depend on measured data and
hence only need to be calculated once, saving on computations. (2) They fully cover the “non-data”
aspect of the seismic imaging algorithm, thus unambiguously pinpointing the portion of the seismic
imaging algorithm where our efforts should be concentrated on3. (3) They always act in the form
of an integration kernel, a heavily studied area in mathematics and scientific computation, and
therefore lead us to many useful concepts and tools.

2 Seismic imaging operators for α1 and α2

2.1 Symmetry in Green’s operator and the sign of the square-root

For any fixed horizontal wavenumber k and frequency ω, there are two different vertical wavenum-
bers q that satisfy the dispersion relation: (ω/c0)2 = k2 + q2. Obviously q should be computed
from k and ω through a square-root operation, and each answer differs from the other by a negative
sign. Due to the fact that the vertical number q is present in the definition of Green’s function
used in the inverse scattering series, the choice of this sign for square-root has an immediate and
significant impact on the inverse scattering series.

The requirement for the q information varies dramatically in the inverse scattering series:
3The other part is the input seismic data; in the framework of isolated task subseries, we assume the data satisfy

our assumptions and by themself are not our concern for the seismic imaging subseries.
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1. For models without lateral variation, as demonstrated in equation (42), q differs from ω by
a constant factor, and the square-root in the entire inverse series always reduces to a much
simpler linear relation.

2. To calculate a laterally varying α1 with the restriction kh = 0, although the nonlinear (q, ω)-
relation will be encountered, only (ω/c0)2 − k2 ≥ 0 are needed4, and in this situation, the
sign had been specified by equation (19) from Clayton and Stolt (1981)

3. To calculate laterally varying α2, α3, · · · , for example in equation (34), we have to face not
only the nonlinear (q, ω)-relation, but also the situation of (ω/c0)2 − k2 < 0.

This subsection is devoted to the issue. It is surprising that this choice can be simply and unam-
biguously derived from the symmetry of Green’s function itself; nothing else is required. It is clear
that in the space and time domain Green’s function of a homogeneous medium in any dimension
can be written as,

G0 (~xg, ~xs, t, zg, zs)
denote as=⇒=⇒ φ (~xg − ~xs, t, zg − zs) .

The newly defined function φ is real5. If we switch the horizontal coordinate of the source and re-
ceiver, the phone should record the same data because the source-receiver distance has not changed.
Consequently, the newly defined function φ must have the following symmetry,

φ (~x, t, z) = φ (−~x, t, z) . (8)

The well known (~k, ω)-domain Green’s function for wave propagation in a multi-D homogeneous
medium, for example, equation (64) from Weglein et al. (2003), is eiq|z|

2iq . By definition, it is also the
double Fourier transform of equation (8) over space and time,

eiq|z|

2iq
= ˜̃
φ(~k, ω, z) =

~∫
d~x

∞∫
−∞

dt φ(~x, t, z)ei(ωt−~k·~x). (9)

where q = ?
√

(ω/c0)2 − k2; we use ?
√ to emphasize the fact that we haven’t yet committed to any

choice for the sign of q. It should satisfy the following symmetry relation,

˜̃
φ(−~k, ω, z) =

~∫
d~x

∞∫
−∞

dt φ(~x, t, z)ei(ωt−(−~k)·~x) =
~∫
d~x

∞∫
−∞

dt φ(~x, t, z)ei(ωt−~k·(−~x))

~y
4
=−~x
=⇒

~∫
d~y

∞∫
−∞

dt φ(−~y, t, z)ei(ωt−~k·~y) =
~∫
d~y

∞∫
−∞

dt φ(~y, t, z)ei(ωt−~k·~y)

= ˜̃
φ(~k, ω, z).

(10)

4For example, in equation (33), the expression inside the square-root is always positive
5Being real means that its imaginary part is zero.
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From equation (10), our Green’s operator is an even function of ~k. On the other hand, if the signs
of ~k and ω are simultaneously flipped, we have,

˜̃
φ(−~k,−ω, z) =

~∫
d~x

∞∫
−∞

dt φ(~x, t, z)ei(−ωt−(−~k)·~x) =
~∫
d~x

∞∫
−∞

dt φ(~x, t, z)e−i(ωt−~k·~x)

=

 ~∫ d~x ∞∫
−∞

dt φ(~x, t, z)ei(ωt−~k·~x)

∗ =
[˜̃
φ(~k, ω, z)

]∗
.

(11)

Combining equation (10) and equation (11), we have the following symmetry relation,

˜̃
φ(~k,−ω, z) = ˜̃

φ(−~k,−ω, z) =
[˜̃
φ(~k, ω, z)

]∗
. (12)

In summary, equation (12) states that, when ω is replaced by −ω, the spectrum become the
conjugate of the original, i.e, the real part of the spectrum stays the same, but its imaginary part
changes sign.

Equation (12) has a clear mandate over choice for the sign of q = ?
√

(ω/c0)2 − k2:

• Case I: ω2

c20
−k2 > 0. In this case q = ?

√
ω2

c20
− k2 is a purely real number, no matter what square-

root sign convention we choose. Both 2iq and eiq|z| have a non-zero imaginary part. How can
we define q such that the real part of Green’s function stays the same, but the imaginary part

flips sign when ω is replaced by −ω? Our choice is to let q = ω
√
c−2
0 − (k/ω)2, the same as

equation (19) of Clayton and Stolt (1981)6.

• Case II: ω2

c20
− k2 < 0. In this case q = ?

√
ω2

c20
− k2 is a purely imaginary number, no matter

what square-root sign convention we choose. Both 2iq and eiq|z| are purely real numbers and
have no imaginary part. How can we define q such that the real part of Green’s function stays
the same, but the imaginary part flips sign when ω is replaced by −ω? Our choice is to let
q = i

√
k2 − (ω/c0)2, where the positive sign is taken on the square-root7.

In summary, the square-root’s sign in q = ?
√

(ω/c0)2 − k2 follows that of ω when its argument is
positive. In other situations, i.e, when it has negative argument, the imaginary part of the answer

6There is only one other choice to satisfy this symmetry, that is, to let q = −ω
q

c−2
0 − (k/ω)2. This choice,

however, will cause the result of equation (15) to flip sign after an inverse Fourier transform back into space. Therefore,
this choice is not correct in our convention of Fourier transforms, and the symmetry of Green’s function unambiguously
provides us with the correct sign choice defined in equation (19) of Clayton and Stolt (1981).

7There is only one other choice of sign to satisfy the symmetry of Green’s function: q = −i
p

k2 − (ω/c0)2. This
choice, however, will be demonstrated as totally unreasonable since it violates the benchmark equation (18).
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must be chosen as “always positive” or “always negative”. We choose it as “always positive”,
because in this case, eiq|z| always enjoys an exponentially decay8, as expressed below,

q = ?
√

(ω/c0)2 − k24=
{

sgn(ω)
√

(ω/c0)2 − k2 if (ω/c0)2 − k2 ≥ 0
i
√
k2 − (ω/c0)2 if (ω/c0)2 − k2 < 0

(13)

As a verification, we will demonstrate that: (1) our sign choice will lead to 2D Green’s function
from Morse and Feshbach (1953); Arfken and Weber (1985); and (2) other choices, for example,
allowing exponential growth of eiq|z|, cannot lead to our desired Green’s function.

For 2D Green’s function with fixed ω > 0, using our choice for the sign of square-root in the
definition of q, and denote k0 = ω

c0
, we transform Green’s operator back into space (but still in the

frequency domain),

1
2π

∞∫
−∞

eiq|z|

2iq
eikxdk

G0(−k)=G0(k)
=⇒=⇒=⇒ 1

π

∞∫
0

eiq|z|

2iq
cos [kx] dk =

1
π

 ω/c0∫
0

+

∞∫
ω/c0


=

1
π

k0∫
0

ei
√

k2
0−k2|z|

2i
√
k2

0 − k2
cos [kx] dk +

1
π

∞∫
k0

exp
(
−
√
k2 − k2

0|z|
)

−2
√
k2 − k2

0

cos [kx] dk.

(14)

In the case of |z| = 0, the first integral of equation (14) contains one purely imaginary piece. Ac-
cording to equation (9.1.18) from Abramowitz and Stegun (1965), it reduces to the Bessel function
of the 0th-order,

1
π

k0∫
0

ei
√

k2
0−k2|z|

2i
√
k2

0 − k2
cos [kx] dk

|z|=0
=⇒ −i

2π

k0∫
0

cos [kx]√
k2

0 − k2
dk

u
4
=arcsin[k/k0]
=⇒=⇒ −i

2π

π/2∫
0

cos (k0x sin[u]) du =
−i
4π

π∫
0

cos (k0x sin[u]) du =
−i
4

J0 (k0x) .

(15)

If |z| 6= 0, the first integral of equation (14) contains real and imaginary parts, both of which are
very complicated,

1
π

k0∫
0

ei
√

k2
0−k2|z|

2i
√
k2

0 − k2
cos [kx] dk =

1
2π

k0∫
0

sin
(√

k2
0 − k2|z|

)
√
k2

0 − k2
cos[kx]dk

− i
2π

k0∫
0

cos
(√

k2
0 − k2|z|

)
√
k2

0 − k2
cos[kx]dk.

(16)

8Due to the absolute sign in Green’s function, it requires |z| instead of z itself. Hence its argument iq|z| is always
a negative number.
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In some special cases, for example, when z = 0, the first integral of equation (16) vanishes and the
second one is simple and can be expressed as the Neumann function of the 0th-order, according to
equation (9.1.24) from Abramowitz and Stegun (1965),

−1
2π

∞∫
k0

exp
(
−
√
k2 − k2

0|z|
)

√
k2 − k2

0

cos [kx] dk
|z|=0
=⇒ −1

2π

∞∫
k0

cos [kx]√
k2 − k2

0

dk
u
4
=k/k0=⇒ −1

2π

∞∫
1

cos [k0xu]√
u2 − 1

du

=
1
4
Y0(|k0x|) =

1
4
Y0

(∣∣∣∣ωxc0
∣∣∣∣)

(17)

As a benchmark, a 2D Green’s function, for example, equation (7.2.18) from Morse and Feshbach
(1953)9 or Table 8.5 from Arfken and Weber (1985)10 is,

1
4

[
Y0

(
ω
√
x2 + z2

c0

)
− iJ0

(
ω
√
x2 + z2

c0

)]
.

When z = 0, we have |x| =
√
x2 + z2, and it is clear that equation (15) and equation (17) replicate

the real and imaginary part of 2D Green’s function, respectively. In summary, our choice for the
sign leads to the correct Green’s function in the special case of z = 0.

Since for any x and z, the sum of both integrals in equation (14) will be the 2D Green’s function
in the (x, ω)-domain, we must have,

1
4
Y0

(
k0

√
x2 + z2

)
=

1
2π

k0∫
0

sin
(√

k2
0 − k2|z|

)
√
k2

0 − k2
cos[kx]dk

+
−1
2π

∞∫
k0

exp
(
−
√
k2 − k2

0|z|
)

√
k2 − k2

0

cos [kx] dk,
(18)

and,

1
4
J0

(
k0

√
x2 + z2

)
=

1
2π

k0∫
0

cos
(√

k2
0 − k2|z|

)
√
k2

0 − k2
cos[kx]dk. (19)

Equation (18) and (19) will serve as the benchmark for our choice of sign. First let’s demonstrate
that, when k2

0 − k2 > 0 , our sign choice satisfies equation (19) for any x and z. In equation (19),
it is hard to imagine how the tangled (x, z)-relation on the right-hand-side collapsed into the neat

9In Morse and Feshbach (1953), the definition of Green’s function differs from our convention by an extra factor
−4π.

10In equation (8.159) from Arfken and Weber (1985), its definition of Green’s function differs from ours by a
negative sign.
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sum of squares on the left-hand-side. It can actually be proven as follows: defining u
4
=arcsin[k/k0],

the right-hand-side of equation (19) can be written as,

1
2π

π/2∫
0

cos (k0|z| cos[u]) cos (k0x sin[u]) du =
1
2π

π/2∫
0

du

{
cos (k0|z| cos[u]− k0x sin[u])+
cos (k0|z| cos[u] + k0x sin[u])

}
. (20)

Since the result is an even function of x, we can assume x is positive and later trivially extend the
result for positive x to negative x. We define r =

√
(k0x)2 + (k0z)2, 0 ≤ θ = arctan(x/|z|) ≤ π/2.

Equation (20) can be further simplified as,

1
4π

π/2∫
0

du

{
cos (r cos[u+ θ])+
cos (r cos[u− θ])

}
=

1
4π

 π/2+θ∫
θ

+

π/2−θ∫
−θ

 cos (r cos[u]) du (21)

In the equation above, both integrals on the right-hand-side can be expressed as adding a slight-

lylittle bit to, and subtract another little bit from, a much easier integral with fixed limits:
π/2∫
0

,

π/2+θ∫
θ

=
π/2∫
0

+
π/2+θ∫
π/2

−
θ∫
0

π/2−θ∫
−θ

=
π/2∫
0

+
0∫
−θ

−
π/2∫

π/2−θ

 =⇒
π/2+θ∫
θ

+

π/2−θ∫
−θ

= 2

π/2∫
0

+

0∫
−θ

−
θ∫

0

+

π/2+θ∫
π/2

−
π/2∫

π/2−θ

. (22)

The final result of equation (22) contains five integrals, and it is easy to show that the second
integral cancels with the third,

0∫
−θ

=

0∫
−θ

cos[r cos(u)]du v
4
=−u=⇒

0∫
θ

cos[r cos(−v)]d(−v) =

θ∫
0

cos[r cos(v)]dv =

θ∫
0

,

and that the fourth integral cancels with the fifth,

π+θ∫
π/2

=

π+θ∫
π/2

cos[r cos(u)]du v
4
=π−u=⇒

π/2−θ∫
π/2

cos[r cos(π − v)]d(π − v) =

π/2∫
π/2−θ

cos[−r cos(v)]dv

=

π∫
π/2−θ

cos[r cos(v)]dv =

π/2∫
π/2−θ

.

Consequently, using equation 9.1.18 from Abramowitz and Stegun (1965), equation (21) can simply
be written as,

2
4π

π/2∫
0

=
1
2π

π/2∫
0

cos(r cos[u]) =
1
4π

π∫
0

cos(r cos[u])du =
π

4π
J0(r) =

1
4
J0

(
k0

√
x2 + z2

)
. (23)
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In conclusion, the benchmark result in equation (19) is satisfied by any x and z.

Next we will demonstrate that, when k2
0 − k2 < 0, our choice of sign do obtain the benchmark

Green’s function in the special case of x = 0. If x = 0, equation (18) can also be straightforwardly
proven. Its first portion is,

1
2π

k0∫
0

sin
(√

k2
0 − k2|z|

)
√
k2

0 − k2
dk

u
4
=arccos(k/k0)

=⇒=⇒ 1
2π

0∫
π/2

sin (|k0z| sin[u])
k0 sin[u]

d(k0 cos[u])

=
1
2π

π/2∫
0

sin (|k0z| sin[u]) =
1
4π

π∫
0

sin (k0|z| sin[u]) = −1
4
E0(|k0z|).

(24)

In the last step of the equation above, we applied equation (8.580.2) of Gradshteyn and Ryzhik
(1994). In the last part of equation (24), the symbol E0 is called Weber’s function, following the
notation of Gradshteyn and Ryzhik (1994). And the second portion of equation (18) is,

−1
2π

∞∫
k0

exp
(
−
√
k2 − k2

0|z|
)

√
k2 − k2

0

dk
u
4
=k/k0=⇒ −1

2π

∞∫
1

e−
√

u2−1|k0z|
√
u2 − 1

=
−1
2π

∞∫
1

e−
√

u2−1|k0z|d ln
(
u+

√
u2 − 1

) v
4
= ln(u+

√
u2−1)

=⇒=⇒=⇒=⇒
∞∫
0

e−|k0z| sinh[v]dv

=
(
−1
2π

)(
−π
2

)
(E0(|k0z|) + Y0(|k0z|)) =

1
4

(E0(|k0z|) + Y0(|k0z|)) .

(25)

In equation (25), we applied formula (3.335) from Gradshteyn and Ryzhik (1994). Adding equa-
tion (24) and equation (25) together, we have,

1
2π

k0∫
0

sin
(√

k2
0 − k2|z|

)
√
k2

0 − k2
cos[kx]dk +

−1
2π

∞∫
k0

exp
(
−
√
k2 − k2

0|z|
)

√
k2 − k2

0

cos[kx]dk

x=0=⇒E0(|k0z|) + Y0(|k0z|)
4

+
−E0(|k0z|)

4
=

Y0(|k0z|)
4

.

(26)

In the second integral of equation (14), if we change our mind, i.e, we choose ?
√
k2

0 − k2 =
−i
√
k2 − k2

0 when k2
0 − k2 < 0, then, in the special case of x = 0,

1
2π

∞∫
k0

exp
(√

k2 − k2
0|z|
)

√
k2 − k2

0

cos [kx] dk x=0=⇒ 1
2π

∞∫
k0

exp
(√

k2 − k2
0|z|
)

√
k2 − k2

0

dk,

will diverge for any z. Consequently, whatever value “the first integral of equation (18)” will
converge to, their sum will not result in the desired Neumann function, which is finite for any
z > 0. This will cause equation (18) to be violated, and this choice for the sign will not lead to the
correct Green’s function.
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2.2 The surprising behavior of and lessons learned from seismic imaging oper-
ators for a target without lateral variation

Although the concept of a seismic imaging operator is not explicitly used in Shaw et al. (2003), we
can easily derive its result with the seismic imaging operator, and in this process, we demonstrate
the behavior of a seismic imaging operator in the simplest scenario. Here is an alternative derivation
of equation (B-5) from equation (B-4). After defining: kz = −2k0, we can rewrite equation (B-4)
of Shaw et al. (2003) as,

α̃2(kz) =

∞∫
−∞

dz′′α1(z′′)

∞∫
−∞

dz′′
−ikz

2
H(z′ − z′′)α1(z′)e−ikzz′

=

∞∫
−∞

dz′α1(z′)

∞∫
−∞

dz′′ H(z′ − z′′)α1(z′′)
−ikz

2
e−ikzz′

(27)

Applying the Fourier transform11 1
2π

∞∫
−∞

dkz e
ikzz on both sides of equation (27), we have,

α2(z) =
1
2π

∞∫
−∞

dkz e
ikzzα̃2(kz)

=
1
2π

∞∫
−∞

dkz e
ikzz

∞∫
−∞

dz′α1(z′)

∞∫
−∞

dz′′ H(z′ − z′′)α1(z′′)
−ikz

2
e−ik′z .

(28)

If the
∞∫
−∞

dkz is switched to be the inner-most integral and applied first, we have,

∞∫
−∞

dz′α1(z′)

∞∫
−∞

dz′′ H(z′ − z′′)α1(z′′)
1
2π

∞∫
−∞

dkz
−ikz

2
eikzze−ikzz′ . (29)

Focus on the inner-most integral of equation (29) and carry out the Fourier transform analytically,

1
2π

∞∫
−∞

dkz
−ikz

2
eikzze−ikzz′ =

1
2π

∞∫
−∞

dkz
−ikz

2
eikz(z−z′) = −δ

′(z − z′)
2

. (30)

11Here we use the Fourier transform convention of Shaw et al. (2003).
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Equation (30) can simplify the original result in equation (29),
∞∫

−∞

dz′α1(z′)

∞∫
−∞

dz′′ H(z′ − z′′)α1(z′′)
1
2π

∞∫
−∞

dkz
−i
2
eikzze−ikzz′

=
−1
2

∞∫
−∞

dz′α1(z′)

∞∫
−∞

dz′′ H(z′ − z′′)α1(z′′)δ′(z − z′)

=
−1
2

∞∫
−∞

dz′α1(z′)δ′(z − z′)

∞∫
−∞

dz′′ H(z′ − z′′)α1(z′′)

=
−1
2

∞∫
−∞

dz′δ′(z − z′)α1(z′)

z′∫
−∞

dz′′ α1(z′′).

(31)

Let’s have a brief look at the integration involving δ′(u): a given smooth function f(u) (with
continuous derivatives), its integral with δ′(u− u0) is done by first integrating by parts to manage
a δ(u− u0) in the integral, then applying the sifting property of δ(u− u0) as follows,

∞∫
−∞

f(u)δ′(u− u0)dx = [f(u)δ(u− u0)]
∞
−∞ −

∞∫
−∞

f ′(u)δ(u− u0)dx = −f ′(u0).

Using the method in the equation above to integrate over δ′, we can simplify equation (31) further,

−1
2

∞∫
−∞

dz′δ′(z − z′)α1(z′)

z′∫
−∞

dz′′ α1(z′′)

=
−1
2

 ∂

∂z′

α1(z′)

z′∫
−∞

dz′′ α1(z′′)


z′=z

= −1
2

α2
1(z

′) + α′1(z
′)

z′∫
−∞

α1(z′′)dz′′


z′=z

=− 1
2

α2
1(z) + α′1(z)

z∫
−∞

α1(z′)dz′

 .
(32)

Note that equation (32) is exactly the same as equation (B-5) from Shaw et al. (2003). So far we
have demonstrated that the seismic imaging operator can be used to duplicate M-OSRP’s previous
imaging results: i.e, the separation of imaging and inversion terms through integration by parts.
Several lessons can be gleaned from this 1D example,

•
∞∫
−∞

dkz is necessary to obtain a clean result above the integration over the entire frequency

spectrum12. In a more complicated lateral world, this integration over the entire kz spec-
12Although when we actually implement the final formula in digital computers, we never have access to the full

spectrum of the data; using them in the derivation process when we calculate the seismic imaging operator, on the
other hand, greatly simplifies the final result.
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trum should also be necessary, although it will be extremely difficult for target depths up to
thousands of meters and will incur expansions with millions of terms.

• The imaging result is initially expressed as an integral, for example, equation (27). But
after applying the Fourier transform, partial derivatives appear in the final formula. Extra
attention should be paid to the seismic imaging operator.

• Even for simple models without lateral variation, the integral which initially requires α1(z)
may end up asking for α′1(z) in the final result; in other situations it may want α′′1(z), · · · .
It is natural to imagine that, in a more complicated laterally varying world, we may need a
unified formalism wanting α1(z), α′1(z), α

′′
1(z) · · · simultaneously. This structure is indeed

verified in this article since the rapid variation of the seismic imaging operator associated with
a multi-D earth explicitly asks for variation detail in the data, which is best encapsulated in
various derivatives.

• It gives us a remarkably frugal integration scheme: only the sampling at the grid is required,
there is no need for anything else from the neighborhood. For example, as demonstrated
in equation (32), the seemingly double integral (with n2 or quadratic complexity) in the
beginning ends up with a simple evaluation (with n0 or constant complexity).

2.3 The seismic imaging operator for laterally varying α1

In the (km, z) domain, with the constraint of kh = 0, α1 in 2D and 3D seismic can be uniformly
expressed as13,

α̃1(~km, z) = − 8
c0

∞∫
−∞

D̃

(
~km,

2z′

c0

)
γ̃1(km, z, z

′)dz′,

where : γ̃1(km, z, z
′) =

1
2π

∞∫
−∞

dkz
k2

z

k2
z + k2

m

ei(z
′
√

k2
z+k2

m−zkz),

and : D̃(~km, τ) =
~∫
d~xme

−i~km•~xm
~∫
d~xhD

(
~xm +

~xh

2
, ~xm − ~xh

2
, τ

)
.

(33)

In equation (33), D is the data in the space and time domain: D = D(~xg, ~xs, t). Changing

the integration variable to κ
4
=kz/km and using equation (76), the distribution γ̃1 can be further

13This is a unified formula for equation (2.22) of Liu (2006) and equation (32) of Liu and Weglein (2007).
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expressed as,

γ̃1(km, z, z
′) =

1
2π

∞∫
−∞

dkz
k2

z

k2
z + k2

m

ei(z
′
√

k2
z+k2

m−zkz)

=
|km|
2π

∞∫
−∞

dκ
κ2

κ2 + 1
ei(kmz′

√
κ2+1−kmzκ) = |km|F−2,2(kmz

′, kmz).

Note that,

1. Although γ̃1 has three arguments, it can be expressed by the distribution F−2,2 which has
only two degrees of freedom.

2. Due to the fact that in seismic exploration both z and z′ can reach several kilometers, the
seismic imaging algorithm in equation (33) needs the value of the distribution F−2,2 at very
large depths.

3. For a fixed km, the larger the depth, the bigger the argument required in F−2,2.

4. For a fixed pair of depths (z, z′), the higher the km (horizontal wavenumber), the more
demanding the algorithm becomes in terms of information from F−2,2.

2.4 The Seismic imaging operator for laterally varying α2

In 2D, α2 can be rewritten in the (km, z) domain as14,

α̃2(km, z) =
1
4π

∞∫
−∞

dk1

∞∫
−∞

dz′α̃1(0.5km − k1, z
′)

z′∫
−∞

dz′′α̃1(0.5km + k1, z
′′)

γ̃2

(
km, k1, z −

z′ + z′′

2
,
z′ − z′′

2

)
.

(34)

Similarly, in 3D, α2 can be rewritten in the ~km (wavenumber) domain as,

α̃2(~km, z) =
1

8π2

~∫
~k1

∞∫
−∞

dz′α̃1(0.5~km − ~k1, z
′)

z′∫
−∞

dz′′α̃1(0.5~km + ~k1, z
′′)

γ̃2

(
km, k1, z −

z′ + z′′

2
,
z′ − z′′

2

)
.

(35)

14Please notice that in equation (36), the definition of eγ2 is different from the eγ2 of equation (A.29) in Liu (2006),
they differ by 1

2π
. Currently we feel it is better to put the 1

2π
factor in the definition of eγ2 since it belongs to the

inverse Fourier transform over kz. In equation (34), the upper limit of the dz′′ integral is changed to be z′, which
will introduce another factor of 2.
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In both equation (34) and (35), the function γ̃2 is defined with the sign convention for square-root
specified in equation (13),

γ̃2 (km, k1, ε0, ε1) =
1
2π

∞∫
−∞

dkzi
k2

z + k2
m

u1
ei(ε1u1−ε0kz),

where : u1 =
{

sgn(kz)
√
k2

z + k2
m − 4k2

1 (if k2
z + k2

m − 4k2
1 ≥ 0)

i
√

4k2
1 − k2

m − k2
z (if k2

z + k2
m − 4k2

1 < 0)
.

(36)

Given that kz ranges from −∞ to ∞, equation (36) will have very different behavior if the sign of
k2

m−4k2
1 is different. If k2

m−4k2
1 ≥ 0, k2

z +k2
m−4k2

1 will always be positive for every kz ∈ (−∞,∞);
otherwise k2

z + k2
m − 4k2

1 may become negative for some small kz.

1. First case: k2
m−4k2

1 ≥ 0, we define a
4
=
√
k2

m − 4k2
1, and consequently u1 =

√
k2

z + k2
m − 4k2

1 =√
k2

z + a2. Changing the integration variable to κ
4
=kz/a, and using the function defined in

equation (76), we can convert equation (36) to,

γ̃2 (km, k1, ε0, ε1) =
1
2π

∞∫
−∞

dkzi
k2

z + k2
m

sgn(kz)
√
k2

z + a2
ei(ε1sgn(kz)

√
k2

z+a2−ε0kz)

=
a2

2π

∞∫
−∞

dκi
κ2ei(aε1sgn(κ)

√
κ2+1−aε0kz)

sgn(κ)
√
κ2 + 1

+
k2

m

2π

∞∫
−∞

dκi
ei(aε1sgn(κ)

√
κ2+1−aε0kz)

sgn(κ)
√
κ2 + 1

=a2F−1,2(aε1, aε0)− k2
mF−1,0(aε1, aε0)

2. Second case: k2
m−4k2

1 < 0, we define a
4
=
√

4k2
1 − k2

m, and consequently u1 =
√
k2

z + k2
m − 4k2

1 =
?
√
k2

z − a2. Please notice that in this case k2
z−a2 will change sign as kz varies from −∞ to ∞.

In this situation, the integral can be more conveniently written in two partions, each with its
own form of ?

√
k2

z − a2,

γ̃2 (km, k1, ε0, ε1) =
∫

|kz |≥a

+
∫

|kz |<a

. (37)

On the right-hand-side of equation (37), the first integral is the major contribution. Changing

the integration variable to κ
4
=kz/a, and using the function relation in equation (77), this
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integral can be expressed as,∫
|kz |≥a

=
1
2π

∫
|kz |≥a

dkzi
k2

z + k2
m

sgn(kz)
√
k2

z − a2
ei(ε1sgn(kz)

√
k2

z−a2−ε0kz)

=
a2

2π

∫
|κ|≥1

dκi
κ2ei(aε1sgn(κ)

√
κ2−1−aε0κ)

sgn(κ)
√
κ2 − 1

+
k2

m

2π

∫
|κ|≥1

dκi
ei(aε1sgn(κ)

√
κ2−1−aε0κ)

sgn(κ)
√
κ2 − 1

=(−1)2−1−1a2F1,0(−aε0,−aε1)− (−1)0−1−1k2
mF−1,0(−aε0,−aε1)

=a2F1,0(−aε0,−aε1)− k2
mF−1,0(−aε0,−aε1).

(38)

On the other hand, the second integral on the right-hand-side of equation (37) is the minor

contribution. Changing the integration variable to κ
4
=kz/a, it can be simplified,∫

|kz |≤a

=
1
2π

∫
|kz |≤a

dkz
(k2

z + k2
m)e−ε1

√
a2−k2

z√
a2 − k2

z

e−iε0kz

=
a2

2π

∫
|κ|≤1

dκ
κ2e−aε1

√
1−κ2

e−iaε0κ

√
1− κ2

+
k2

m

2π

∫
|κ|≤1

dκ
e−aε1

√
1−κ2

e−iaε0κ

√
1− κ2

=
a2

π

1∫
0

dκ
κ2e−aε1

√
1−κ2 cos [aε0κ]√
1− κ2

+
k2

m

π

1∫
0

dκ
e−aε1

√
1−κ2 cos [aε0κ]√
1− κ2

.

(39)

Note that as the value of ε1 =
∣∣∣ z′−z′′

2

∣∣∣ increases, the exponential decay in e−aε1

√
1−x2 will

cause equation (39) to quickly taper to zero. In other words, this term is negligible for large
depths.

2.5 Reduced behavior of the seismic imaging operator for earth without lateral
variation

It is illuminating to look at the behavior of the seismic imaging operator γ̃2 if the earth has no
lateral variation. In this case, the seismic data’s Fourier transform over x will produce a Dirac δ
function since the data is a constant with respect to x, that is15,

α̃1(km, z) =

∞∫
−∞

α1(z)e−ikmxdx = 2πα1(z)δ(km) (40)

15According to our Fourier convention, i.e, equation (4), there will be a 2π factor in the data
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We then substitute the form of data in equation (40) into the α2 result in equation (34), and then
transform it back into x domain,

α2(x, z) =
1
2π

∞∫
−∞

α̃2(km, z)e−ikmxdkm =

∞∫
−∞

dz′α1(z′)

z′∫
−∞

dz′′α1(z′′)

×
∞∫

−∞

dkm

∞∫
−∞

dk1e
−ikmxδ(0.5km − k1)δ(0.5km + k1)

γ̃2

(
km, k1, z − z′−z′′

2 , z′−z′′

2

)
2

(41)

Note that the two inner-most integrals in equation (41) do not depend on data and can be im-
mediately evaluated using the sifting properties of the two δ functions. Consequently, it results in
the straightforward evaluation of γ̃2

(
km, k1, z − z′−z′′

2 , z′−z′′

2

)
at 0.5km − k1 = 0.5km + k1 = 0, or

equivalently km = k1 = 0, that is γ̃2

(
0, 0, z − z′−z′′

2 , z′−z′′

2

)
.

Substituting km = 0 and k1 = 0 into equation (36), we have,

u1 = 0.5 ?

√
(ω/c0)2 − 4k2

1 = ?

√
k2

z + k2
m − k2

1 = ?
√
k2

z ≡ kz (42)

and consequently,

γ̃2

(
0, 0, z − z′−z′′

2 , z′−z′′

2

)
2

=
1
4π

∞∫
−∞

dkzikze
i(z′−z) =

1
2
δ′(z′ − z) = −1

2
δ′(z − z′) (43)

Note that the final distribution in equation (43) is the same as equation (30), the seismic imaging
operator for earth without lateral variations.

3 Matrix formulation of interpolation and integration

Digital computers are designed to finish a task in a finite number of steps, while a typical integral
requires we sample the infinite number of points in the integration interval. How can we formulate
the integration scheme to arbitrary accuracy in such a way that it is tractable by digital computers
in a finite number of steps? The key is interpolation with the help of various derivatives.

Our approach is fundamentally different from the popular polynomial (or rational) interpolation
methods, for example, Chapter 3 of Press et al. (1992). The major reason is that: Due to the unique
(and one of the best) advantages of the inverse scattering series, i.e, all the details of the integrand
are clearly defined, we are able to extract all aspects of variation, for example, the derivatives of
Green’s function, to arbitrary order.

Note that only by repeatedly using the homogeneous migration velocity, we always have access to
every variation detail of the analytic Green’s function and hence of the seismic imaging operator. If
the reference velocity is updated in every iteration, as proposed in iterative linear inversion, Green’s
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function will no longer be analytic, and consequently its partial derivatives will no longer be readily
available.

Let’s consider the interpolation problem of a function g(y),

g(y) , (y1 ≤ y ≤ y2). (44)

The geometry information, e.g, y1 and y2, are not essential to the problem since if we translate
y1 and y2 by the same constant, the interpolation problem is essentially the same and the new
interpolation result is simply the translation of the old one. We can isolate the interval’s geometric
information with a linear transform below.

3.1 A linear transformation to encapsulate the geometric information of the
interpolation interval

Let’s define a linear transform T,

u = T[y]
4
=
y − y1

y2 − y1
, (45)

and define a function f(u) by,

f(u)
4
=g(T[y]) = g

(
y − y1

y2 − y1

)
. (46)

It is clear that the transform T in equation (45) maps the interval (y1, y2) uniformly to the interval
(0, 1), and using the chain rule we can calculate the corresponding derivatives of f(u) at the ends
of the interval 0 ≤ u ≤ 1,

f(0) = g(y1), f(1) = g(y2),
f ′(0) = g′(y1)T′[y1] = g′(y1)(y2 − y1), f ′(1) = g′(y2)T′[y2] = g′(y2)(y2 − y1),
f ′′(0) = g′′(y1)(y2 − y1)2, f ′′(1) = g′′(y2)(y2 − y1)2,
f ′′′(0) = g′′′(y1)(y2 − y1)3, f ′′′(1) = g′′′(y2)(y2 − y1)3,

· · ·

(47)

Since f(u) is simply the translated and rescaled form of the original function g(y), we have essen-
tially solved the interpolation in equation (44) if we solve the interpolation problem of f(u) between
0 and 1,

f(u) , where 0 ≤ u ≤ 1. (48)

In equation (48), u is defined in equation (45), and its various derivatives at the ends can be
obtained via equation (47).

From now on in this section, we focus on an interpolation problem in the normalized interval (0, 1).
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3.2 Polynomial approximation and its derivatives

For the interpolation problem in equation (48), we can approximate the function f(u) with a
polynomial,

f(u) ≈ P (u)
4
=

N∑
n=0

anu
n = a0 + a1u+ a2u

2 + a3u
3 + · · ·+ aNu

N , (49)

where the unknown coefficients a0, a1, · · · , aN need to be determined. We can evaluate P (u) and
its various derivatives at the end points: u = 0 and u = 1,

P (0) = a0, P (1) =
N∑

n=0
an,

P ′(0) = a1, P ′(1) =
N∑

n=1
nan,

P ′′(0) = 2!a2, P ′′(1) =
N∑

n=2
n(n− 1)an,

P ′′′(0) = 3!a3, P ′′′(1) =
N∑

n=3
n(n− 1)(n− 2)an,

· · ·

(50)

If all coefficients in an equation have a common factor, it is often reasonable to move it to the
other side through a simple division. This is indeed our case: in equation (50), if the fourth row
(associated with the 3rd-order derivative) is scaled by 1

3! , the coefficients on the right hand side
become the binomial coefficients n(n−1)(n−2)

3! (Abramowitz and Stegun, 1965, equation 3.1.2) and
hence are still integers. Similarly, if the third row (associated with the 2nd-order derivative) is
scaled by 1

2! , the coefficients on the right-hand side are again integers n(n−1)
2! . Rescaling all of the

equations with the same logic, i.e, dividing each equation by the greatest common divisor (gcd) of
all coefficients, we have,

P (0) = a0, P (1) =
N∑

n=0
an,

P ′(0)/1! = a1, P ′(1) =
N∑

n=1
nan,

P ′′(0)/2! = a2, P ′′(1)/2! =
N∑

n=2

n(n−1)
2! an,

P ′′′(0)/3! = a3, P ′′′(1)/3! =
N∑

n=3

n(n−1)(n−2)
3! an,

· · ·

(51)

3.3 Solving the polynomial interpolation problem

For the purpose of explanation, let’s say we have sampled (at both end points) f(u) and its deriva-
tives up to the third-order16, then we have 8 pieces of known items: f(0), f ′(0), f ′′(0), f ′′′(0), f(1),

16This formulism is very general, and here the interpolation order ℘̄ can be any non-negative integers.
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f ′(1), f ′′(1), f ′′′(1). In this, case, we define the interpolation order as ℘̄ = 3. The aforementioned
8 known items will be sufficient to determine 8 unknown coefficients: a0, a1, · · · , a7. Grouping the
first 8 identities in equation (51) into a matrix problem, we have,



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
1 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7
0 0 1 3 6 10 15 21
0 0 0 1 4 10 20 35





a0

a1

a2

a3

a4

a5

a6

a7


=



f(0)
f ′(0)
f ′′(0)

2!
f ′′′(0)

3!
f(1)
f ′(1)
f ′′(1)

2!
f ′′′(1)

3!


. (52)

Equation (52) can be easily solved by inverting the matrix on the left-hand-side,



a0

a1

a2

a3

a4

a5

a6

a7


=



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
−35 −20 −10 −4 35 −15 5 −1
84 45 20 6 −84 39 −14 3
−70 −36 −15 −4 70 −34 13 −3
20 10 4 1 −20 10 −4 1





f(0)
f ′(0)
f ′′(0)

2!
f ′′′(0)

3!
f(1)
f ′(1)
f ′′(1)

2!
f ′′′(1)

3!


. (53)

For the purpose of easy explanation, we name the matrix in equation (52) the “Basic matrix”17

and denote it as B. On the other hand, the matrix in equation (53) is named the “Manifest
matrix”18 and is denoted as M.

It is clear that the Basic matrix and Manifest matrix are mutually inverse to each other,

M = B−1 , B = M−1,

and in this case, where the interpolation order is ℘̄ = 3, the values of B and M are,

B =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
1 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7
0 0 1 3 6 10 15 21
0 0 0 1 4 10 20 35


,

17This matrix provides the basic formulization of the interpolation problem.
18This matrix offers the solution for interpolation problem, or equivalently speaking, makes the solution clear.
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M =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
−35 −20 −10 −4 35 −15 5 −1
84 45 20 6 −84 39 −14 3
−70 −36 −15 −4 70 −34 13 −3
20 10 4 1 −20 10 −4 1


.

So far we have covered the solution of the interpolation problem assuming we know the information
of f(u) up to the 3rd-order derivatives. Here we list several other simple scenarios that the readers
may find useful.

The first case is the simplest, where we know only f(0) and f(1), i.e, have at our disposal the
derivatives of f(u) up to the 0th-order, in other words ℘̄ = 0. In this case our interpolation scheme
is just the popular linear interpolation. Its application into integration will produce the well-known
“Trapezoidal rule”, i.e, equation 4.1.3 from Press et al. (1992). In this case the Basic matrix and
the Manifest matrix are,

B =
(

1 0
1 1

)
, M =

(
1 0
−1 1

)
.

If we have knowledge of f(0), f ′(0), f(1), and f ′(1), i.e, with interpolation order ℘̄ = 1, we have
a scheme that is essentially cubic spline interpolation19. Its application into integration will result
in cubic spline quadrature. In this case the Basic matrix and Manifest matrix are,

B =


1 0 0 0
0 1 0 0
1 1 1 1
0 1 2 3

 , M =


1 0 0 0
0 1 0 0
−3 −2 3 −1
2 1 −2 1

 .

Although a matrix of integers will generally have non-integer elements, in all cases we have en-
countered, i.e, maximal interpolation order from ℘̄ = 0 all the way to ℘̄ = 15, M = B−1 are
all matrices of only integers. Our operation to re-scale equation (50) into equation (51) surely
simplifies solutions.

3.4 Integration over interpolation results

Let’s assume we have two functions, f(u) (where 0 ≤ u ≤ 1) and g(u) (where 0 ≤ u ≤ 1), and we
know their derivatives up to the ℘̄th order at the end points. With the technology before, we can
approximate both f(u) and g(u) with polynomials. First let we group the known derivatives into

19The difference between our spline interpolation and popular spline interpolation, for example Section 3.3 of Press
et al. (1992), is that we use the accurate derivatives rather than evaluating using neighbor grids.
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two vectors,

~f
4
=



f(0)
f ′(0)
f ′′(0)

2!
...

f (℘̄)(0)
℘̄!

f(1)
f ′(1)
f ′′(1)

2!
...

f (℘̄)(1)
℘̄!



, ~g
4
=



g(0)
g′(0)
g′′(0)

2!

...
g(℘̄)(0)

℘̄!

g(1)
g′(1)
g′′(1)

2!
...

g(℘̄)(1)
℘̄!



. (54)

Similarly, the coefficients of both polynomials can also be grouped into their corresponding vectors,

~a
4
=


a0

a1

a2
...

a2℘̄+1

 ~b
4
=


b0
b1
b2
...

b2℘̄+1

 , (55)

where the functions f(u) and g(u) can be approximated as20,

f(u) ≈ P (u) = a0 + a1x+ a2u
2 + · · ·+ a2℘̄+1u

2℘̄+1,

g(u) ≈ Q(u) = b0 + b1x+ b2u
2 + · · ·+ b2℘̄+1u

2℘̄+1.
(56)

From the above derivation of the interpolation procedure, we have,

B~a = ~f , ~a = M~f,

B~b = ~g , ~b = M~g.
(57)

We can approximate the integral of f(u)g(u) from 0 to 1 by integrating over the product of their
corresponding approximate polynomials,

1∫
0

f(u)g(u)du ≈
1∫

0

P (u)Q(u)du =

1∫
0

(a0 + a1u+ · · ·) · (b0 + b1u+ · · ·) du

=

1∫
0

2℘̄+1∑
m=0

2℘̄+1∑
n=0

ambnu
m+ndu =

2℘̄+1∑
m=0

2℘̄+1∑
n=0

ambn

1∫
0

um+ndu =
2℘̄+1∑
m=0

2℘̄+1∑
n=0

ambn
m+ n+ 1

.

(58)

20Here we assume the interpolation orders for f(u) and g(u) are the same, so their corresponding Manifest
matrices are identical. It is easy to assume they have different interpolation orders, and the formalism is only
slightly more complicated.
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The integration result in equation (58) can be expressed as the following bilinear form,

1∫
0

f(u)g(u)du ≈ ~aTH~b, (59)

where the matrix H’s element in mth-row and nth-column is 1
m+n+1 (m = 0, 1, 2, · · · 2℘̄ + 1, n =

0, 1, 2, · · · , 2℘̄+ 1). It is denoted as H since it is actually the well-known Hilbert matrix.

Substitute the value of ~a and ~b from equation (57) into equation (59), we have,

1∫
0

f(u)g(u)du ≈ ~aTH~b =
[
M~f

]T
HM~g = ~fTMTHM~g. (60)

If we define the “Nexus matrix”21 (denoted by N) as,

N = MTHM, (61)

equation (60) can be rewritten as,

1∫
0

f(u)g(u)du ≈ ~fTN~g. (62)

Equation (62) has three disadvantages:

1. Its vectors contains derivatives of functions divided by a factorial, e.g., it contains f ′′/2!
instead of f ′′ itself.

2. Each derivatives must be scaled by the power of the original interval, e.g., f ′′ is scaled by the
square of the sampling interval, as exemplified in equation (47).

3. The integration interval is rigidly fixed between 0 and 1.

All three disadvantages can be easily fixed by defining a diagonal matrix,

Λ(h) = diag
(

1,
h

1!
,
h2

2!
, · · · , h

℘̄

℘̄!
, 1,

h

1!
,
h2

2!
, · · · , h

℘̄

℘̄!

)
, (63)

where h = u2 − u1 is the length of the sampling interval. With the help of Λ(h), equation (62) can
be extended to general case,

u2∫
u1

f(u)g(u)du ≈ h ~fTN~g, (64)

21Due to the fact that in calculating the integration result, e.g, equation (62), it serves as a connection between
the derivatives of function f(u) and the derivatives of function g(u), and was hence named as Nexus matrix.
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where in equation (64), ~f and ~g can be constructed from derivatives of various orders as follows,

~f = Λ(h)



f(u1)
f ′(u1)
f ′′(u1)

...
f(u2)
f ′(u2)
f ′′(u2)

...


=



f(u1)
f ′(u1) ∗ h/1!
f ′′(u1) ∗ h2/2!

...
f(u2)
f ′(u2) ∗ h/1!
f ′′(u2) ∗ h2/2!

...


, (65)

~g = Λ(h)



g(u1)
g′(u1)
g′′(u1)

...
g(u2)
g′(u2)
g′′(u2)

...


=



g(u1)
g′(u1) ∗ h/1!
g′′(u1) ∗ h2/2!

...
g(u2)
g′(u2) ∗ h/1!
g′′(u2) ∗ h2/2!

...


. (66)

4 Fast implementation of the Fourier integral
Ξ∫
0

The Fourier transform is widely used in science and engineering. Its straightforward implemen-
tation over a uniformly sampled grids: discrete Fourier transform (DFT) and its corresponding
fast implementation: fast Fourier transform (FFT) are among the best-known tools in scientific
computation (Press et al., 1992, Chapter 12).

We demonstrate that the high-accuracy interpolated Fourier integration can also be expressed as
a discrete sum, and hence can be implemented with the n log(n) efficiency of FFT.

4.1 Fourier integral formulated as interpolated integration

Let’s assume we need to calculate the integral
ℵh∫
0

f(u)g(u)du by dividing it into ℵ uniformly sampled

sub-intervals,

ℵh∫
0

f(u)g(u)du =
ℵ−1∑
`=0

(`+1)h∫
`

f(u)g(u)du =
ℵ−1∑
`=0

h
(
~fT` ,

~fT`+1

)
N
(

~g`

~g`+1

)
. (67)
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In equation (67), h is the length of the sampling interval, ` is the index for u, ℵ is the number of
intervals22, and the last step is the direct application of the integration scheme in equation (64).
The vectors in equation (64) were rewritten in two pieces:

1. The first piece includes derivatives from the lower-limit of the interval. In equation (67), this
part is denoted with index `: for example, ~f` and ~g`.

2. On the other hand, the second piece encapsulates the derivatives from the upper-limit of the
interval. In equation (67), this part is denoted with index `+ 1: for example, ~f`+1 and ~g`+1.

According to equation (65) and (66), their explicit values are,

~fT` =
(
f(`h), · · · , (h)

℘

℘!
f (℘)(`h), · · · , (h)

℘̄

℘̄!
f (℘̄)(`h)

)
,

~gT` =
(
g(`h), · · · , (h)

℘

℘!
g(℘)(`h), · · · , (h)

℘̄

℘̄!
g(℘̄)(`h)

)
.

(68)

In equation (68), ℘ is the order of derivatives. ℘̄ is the maximal order of derivatives.

4.2 Reformulation into discrete Fourier transform

We want to Fourier transform, hence we define the kernel as f(u) = eiku, where k is the Fourier
conjugate of u. If we use ˆ̀ to denote the index for k, and ĥ denotes the sampling interval of k, we
have k = ˆ̀̂h and f(u) = eiku = ei

ˆ̀̂h∗`h. Following the Nyquist frequency defined in equation 12.1.2
from Press et al. (1992), we choose ĥ (the sampling interval of k) as follows,

ĥ =
2π
ℵh

=⇒ ĥh =
2π
ℵ
,

and consequently,

f (℘)(iku) =
∂℘

∂x℘
eiku = (ik)℘ eiku =

(
i ˆ̀̂h
)℘
ei

ˆ̀̂hu,

(h)℘

℘!
f (℘)(`h) =

(
i ˆ̀̂hh

)℘

℘!
ei

ˆ̀̂h∗`h =

(
i ˆ̀̂hh

)℘

℘!
ei2π ˆ̀̀ /ℵ.

It is convenient to define:

~F(ˆ̀)
4
=

1,
i ˆ̀̂hh
1!

, · · · ,

(
i ˆ̀̂hh

)℘̄

℘̄!


T

=

1,
i2π ˆ̀/ℵ

1!
, · · · ,

(
i2π ˆ̀/ℵ

)℘̄

℘̄!


T

. (69)

22Following section 12.2 of Press et al. (1992), in order to accommodate the future cast into FFT, we choose ℵ as
an integer power of 2.
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From equation (69), it’s easy to obtain the following symmetry relation:

~F(−ˆ̀) =
[
~F(ˆ̀)

]∗
, (70)

and the expression for ~f` and ~f`+1:

~f` = ei
ˆ̀̂h∗`h~F(ˆ̀) , ~f`+1 = ei

ˆ̀̂h∗h ~f` = ei2π ˆ̀/ℵ ~f`.

In fact ~f`+1 = ei2π ˆ̀/ℵ ~f` has a critical importance: ~f` and ~f`+1 differ by a constant ei2π ˆ̀/ℵ indepen-
dent of u, any one of them can be easily expressed using the other.

For ease of derivation we divide N into 4 submatrices with the same size,

N =
(

NLU , NRU

NLD , NRD

)
. (71)

Consequently, the original integral can be expressed as :

ℵh∫
0

f(u)g(u)du =
ℵ−1∑
`=0

h
(
~fT` ,

~fT`+1

)
N
(

~g`

~g`+1

)

= h
ℵ−1∑
`=0

(
ei2π`ˆ̀/ℵ

[
~F(ˆ̀)

]T
, ei2π(`+1)ˆ̀/ℵ

[
~F(ˆ̀)

]T)( NLU NRU

NLD NRD

)(
~g`

~g`+1

)

= h
ℵ−1∑
`=0

ei2π`ˆ̀/ℵ
[
~F(ˆ̀)

]T
NLU~g` + ei2π(`+1)ˆ̀/ℵ

[
~F(ˆ̀)

]T
NLD~g`

+ h
ℵ−1∑
`=0

ei2π`ˆ̀/ℵ
[
~F(ˆ̀)

]T
NRU~g`+1 + ei2π(`+1)ˆ̀/ℵ

[
~F(ˆ̀)

]T
NRD~g`+1.

In a discrete Fourier transform, for example, equation 12.1.6 from Press et al. (1992), typically ~g`

multiplies with ei2π`ˆ̀/ℵ and ~g`+1 multiplies with ei2π(`+1)ˆ̀/ℵ. This behavior can be easily managed
in the equation above since ~f` = ei2π`ˆ̀/ℵ~F(ˆ̀) and ~f`+1 = ei2π(`+1)ˆ̀/ℵ~F(ˆ̀) differ from each other by
a constant independent of u, and consequently, the equation above can be rewritten as,

= h
[
~F(ˆ̀)

]T(ℵ−1∑
`=0

[
ei2π`ˆ̀/ℵNLU~g` + ei2π(`+1)ˆ̀/ℵNLD~g`

]
+
ℵ−1∑
`=0

[
ei2π`ˆ̀/ℵNRU~g`+1 + ei2π(`+1)ˆ̀/ℵNRD~g`+1

])

= h
[
~F(ˆ̀)

]T ℵ−1∑
`=0


ei2π`ˆ̀/ℵ

{
NLU + ei2π ˆ̀/ℵNLD

}
~g`

+
ei2π(`+1)ˆ̀/ℵ

{
e−i2π ˆ̀/ℵNRU + NRD

}
~g`+1

 = h


[
~wL(ˆ̀)

]T ℵ−1∑̀
=0

ei2π`ˆ̀/ℵ~g`[
~wR(ˆ̀)

]T ℵ−1∑̀
=0

ei2π(`+1)ˆ̀/ℵ~g`+1

 ,

where: [
~wL(ˆ̀)

]T
=
[
~F(ˆ̀)

]T {
NLU + ei2π ˆ̀/ℵNLD

}
,[

~wR(ˆ̀)
]T

=
[
~F(ˆ̀)

]T {
e−i2π ˆ̀/ℵNRU + NRD

}
.

(72)
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Consequently the original integral can be expressed as,

h


[
~wL(ˆ̀)

]T ℵ−1∑̀
=0

ei2π`ˆ̀/ℵ~g`[
~wR(ˆ̀)

]T ℵ−1∑̀
=0

ei2π(`+1)ˆ̀/ℵ~g`+1

 = h


[
~wL(ˆ̀)

]T ℵ−1∑̀
=0

ei2π`ˆ̀/ℵ~g`[
~wR(ˆ̀)

]T ℵ∑̀
=1

ei2π`ˆ̀/ℵ~g`


=h

{[
~wL(ˆ̀) + ~wR(ˆ̀)

]T(ℵ−1∑
`=0

ei2π`ˆ̀/ℵ~g`

)
− ei2π0ˆ̀/ℵ

[
~wR(ˆ̀)

]T
~g`=0 + ei2πℵˆ̀/ℵ

[
~wR(ˆ̀)

]T
~g`=ℵ

}
.

Taking advantage of the identity ei2π ˆ̀ℵ/ℵ = e2πi ≡ 1, the equation above can be further simplified,

ℵh∫
0

f(u)g(u)du = h

{[
~wL(ˆ̀) + ~wR(ˆ̀)

]T(ℵ−1∑
`=0

ei2π`ˆ̀/ℵ~g`

)
+
[
~wR(ˆ̀)

]T
[~g`=ℵ − ~g`=0]

}
. (73)

In the equation above
ℵ−1∑̀
=0

ei2π`ˆ̀/ℵ~g` is a vector with ℘̄ + 1 components, each of which is of the

form
ℵ−1∑̀
=0

ei2π`ˆ̀/ℵg(℘)(`h) where ℘ = 0, 1, · · · , ℘̄. Note that every sum
ℵ−1∑̀
=0

ei2π`ˆ̀/ℵg(℘)(`h) shares the

same form as equation 12.1.6 from Press et al. (1992) and is actually a discrete Fourier transform.
Consequently, ℵ transforms can be efficiently implemented by the Fast Fourier transform with
ℵ logℵ steps computation.

After the calculation of
ℵ−1∑̀
=0

ei2π`ˆ̀/ℵ~g`, we can calculate its inner-product with the vector
[
~wL(ˆ̀) + ~wR(ˆ̀)

]T
to obtain the integration value with high accuracy.

4.3 Trivial extension for Fourier transform with different sign convention

Note that in the derivation we assume the Fourier transform has the form
Ξ∫
0

f(u)eiku, i.e, the sign of

the exponential is positive. In many situations a negative sign is used in the exponential
Ξ∫
0

f(u)e−iku.

For this case we can simply use −z instead of z in the construction of ~F and eikh = ei2π ˆ̀/ℵ, i.e, use
−ˆ̀ instead of ˆ̀. All other variables can be kept the same.

From equation (72) and equation (70) and the fact that all the submatrices NLU, NRU, NLD, and
NRD must be real since N is real, it is easy to verify the symmetry relation

~wL(−ˆ̀) =
[
~wL(ˆ̀)

]∗
~wR(−ˆ̀) =

[
~wR(ˆ̀)

]∗
. (74)

Equation (74) provides the equation to access the weights for −ˆ̀.
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5 Transcendental seismic imaging operator Fλ,µ

The seismic imaging operators for α1 and α2, and their various derivatives with respect to depth
can generally be expressed as the Fourier transform of the function,

iλ(−i)µkµ
z

[
sgn(kz)

√
1 + k2

z

]λ
eiz̆0sgn(kz)

√
1+k2

z , (75)

where µ > −1 and λ are two integers23.

Use the symbol z̆ to denote the Fourier conjugate of kz and define the transform as,

Fλ,µ(z̆0, z̆)
4
=

1
2π

∞∫
−∞

iλ(−i)µkµ
z

[
sgn(kz)

√
1 + k2

z

]λ
ei(z̆0sgn(kz)

√
1+k2

z−z̆kz)dkz. (76)

Changing the integration variables to u = sgn(kz)
√
k2

z + 1, we can use Fλ,µ(z̆0, z̆) to calculate
another important class of integrals,

1
2π

∫
|kz |≥1

iλ(−i)µkµ
z

[
sgn(kz)

√
k2

z − 1
]λ
ei(z̆0sgn(kz)

√
k2

z−1−z̆kz)dkz

=

∞∫
−∞

iλ(−i)µ
[
sgn(u)

√
u2 + 1

]µ
uλei(z̆0u−z̆sgn(u)

√
u2+1) u

sgn(u)
√
u2 + 1

du

=

∞∫
−∞

iλ(−i)µ
[
sgn(u)

√
u2 + 1

](µ−1)
uλ+1ei(z̆0u−z̆sgn(u)

√
u2+1)du

= (−1)λ+µ−1

∫
|u|≥1

iµ−1(−i)λ+1
[
sgn(u)

√
u2 + 1

]µ−1
uλ+1ei(z̆0u−z̆sgn(u)

√
u2+1)du

= (−1)λ+µ−1Fλ,µ(−z̆0,−z̆)

(77)

The physics behind this type of Fourier transform is very critical for the structure of the seismic
imaging algorithms associated with lateral variations. Several difficulties can be identified imme-
diately,

1. If µ+λ ≥ 0, the integrand in equation (76) will not converge to zero as kz →∞. Consequently,
the corresponding integral is not Riemann integrable. How can we calculate it?

2. There are square-root variations in the amplitude term iλ(−i)µkµ
z

[
sgn(kz)

√
1 + k2

z

]λ
,

3. When z̆0 6= 0, there are additional, much more daunting complexities caused by square-root
complexities in the exponential term, eiz̆0sgn(kz)

√
1+k2

z .
23We require µ > −1 to make sure the integrand is Riemann integrable in the neighborhood of kz = 0.
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A typical Fourier transform in the form of equation (76) normally is rapidly varying (or even
discontinuous) with respect to z̆0 and z̆, but those rapid variations and discontinuities are caused
by large kz values in the transform24. For the purposes of obtaining the most significant rapid
variations, and to study the region where Riemann integrability is violated25, we only need to
study the behavior of the integrand for large kz, for example: kz ≥ 1. If kz ≥ 1, k−2

z is well defined
and the exponential term in equation (76) can be rewritten as,

ei(z̆0sgn(kz)
√

1+k2
z−z̆kz) = eiz̆0(sgn(kz)

√
1+k2

z−kz)ei(z̆0−z̆)kz = eiz̆0(kz

√
1+k−2

z −kz)ei(z̆0−z̆)kz . (78)

If we define: τ = kz

√
1 + k−2

z − kz, the phase term in equation (78) can be expressed as,

eiz̆0(kz

√
1+k−2

z −kz)ei(z̆0−z̆)kz = eiz̆0τei(z̆0−z̆)kz = ei(z̆0−z̆)kz ∗
∞∑

n=0

(iz̆0τ)n

n!
. (79)

Since kz ≥ 1 implies k−2
z ≤ 1, using the Taylor formula for a single variable, i.e, equation (3.6.9) from

Abramowitz and Stegun (1965), we can expand the amplitude term iλ(−i)µkµ
z

[
sgn(kz)

√
1 + k2

z

]λ
as follows,

iλ(−i)µkµ
z

[
sgn(kz)

√
1 + k2

z

]λ
= iλ(−i)µkµ

z

[
kz

√
1 + k−2

z

]λ

= iλ(−i)µkµ+λ
z

(
1 + k−2

z

)0.5λ

= iλ(−i)µkµ+λ
z

(
1 +

0.5λ
1!

k−2
z +

(0.5λ)(0.5λ− 1)
2!

k−4
z + · · ·

)
= iλ(−i)µkµ+λ

z

(
1 +

∞∑
n=1

(0.5λ)(0.5λ− 1) · · · (0.5λ− n+ 1)
n!

k−2n
z

)
.

(80)

With the amplitude term expressed in equation (80) and the phase term evaluated in equation (79),
the integrand in equation (76) can be written as,

iλ(−i)µkµ
z

[
sgn(kz)

√
1 + k2

z

]λ
ei(z̆0sgn(kz)

√
1+k2

z−z̆kz)

= iλ(−i)µkµ+λ
z

(
1 +

∞∑
n=1

(0.5λ)(0.5λ− 1) · · · (0.5λ− n+ 1)
n!

k−2n
z

)( ∞∑
n=0

(iz̆0τ)n

n!

)
ei(z̆0−z̆)kz .

(81)

Now let’s have a closer look at the integrand rewritten in equation (81). It is the product of two
parts, the first part is the re-constructed phase term and is a simple harmonic sinusoidal function26,

ei(z̆0−z̆)kz . (82)
24Just like a function in the time domain, the rapid variation, or detail of the change, comes from the high-frequency

part of the spectrum. The low-frequency part provides the overall trend, but not the fine detail.
25Actually our integral in equation (76) is Riemann integrable for any finite interval since µ > −1.
26Note that, for large kz, the complicated square-root sgn(kz)

√
1 + k2

z can be very well approximated by the linear
expression kz, and the larger the kz, the better the approximation. Consequently, this new phase term: ei(z̆0−z̆)kz is

a very good approximation for the original phase term ei(z̆0sgn(kz)
√

1+k2
z−z̆kz).
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The second part is the re-constructed amplitude term and is much more complicated,

A
4
=iλ(−i)µkµ+λ

z

(
1 +

∞∑
n=1

(0.5λ)(0.5λ− 1) · · · (0.5λ− n+ 1)
n!

k−2n
z

)( ∞∑
n=0

(iz̆0τ)n

n!

)
. (83)

Note that, if µ + λ ≥ 0, A will not converge to zero as kz → ∞. Consequently, our Fourier
transform,

∞∫
−∞

Aei(z̆0−z̆)kzdkz, (84)

is not a Riemann integral. How can we calculate it? Our approach is to expand the amplitude
term A specified in equation (83) to sufficient accuracy. First we need the expression for τn

(n = 1, 2, · · · ).

5.1 Expansion of
(
kz

√
1 + k−2

z − kz

)n

(n = 1, 2, 3, · · · ) when |kz| > 1

Since |kz| ≥ 1 implies k−2
z ≤ 1, it is straightforward to calculate τ using equation (3.6.9) from

Abramowitz and Stegun (1965),√
k−2

z + 1 =
(
1 + k−2

z

)1/2 = 1 +
0.5
1!
k−2

z +
0.5 (0.5− 1)

2!
k−4

z +
0.5 (0.5− 1) (0.5− 2)

3!
k−6

z + · · ·

= 1 +
∞∑

n=1

0.5 (0.5− 1) (0.5− 2) · · · (0.5− n+ 1)
n!

k−2n
z .

(85)

Consequently, kz

√
k−2

z + 1 can be straightforwardly calculated as follows,

kz

√
k−2

z + 1 = kz +
∞∑

n=1

0.5 (0.5− 1) (0.5− 2) · · · (0.5− n+ 1)
n!

k1−2n
z . (86)

Using equations (85) and (86), we can iteratively calculate τn from n = 1 to whatever order we
need. Here are a few examples:(

kz

√
k−2

z + 1− kz

)
=

1
2
k−1

z − 1
8
k−3

z +
1
16
k−5

z − 5
128

k−7
z +

7
256

k−9
z − 21

1024
k−11

z

+
33

2048
k−13

z − 429
32768

k−15
z +

715
65536

k−17
z − 2431

262144
k−19

z + · · · ,(
kz

√
k−2

z + 1− kz

)2

=
1
4
k−2

z − 1
8
k−4

z +
5
64
k−6

z − 7
128

k−8
z +

21
512

k−10
z − 33

1024
k−12

z

+
429

16384
k−14

z − 715
32768

k−16
z +

2431
131072

k−18
z − 4199

262144
k−20

z + · · · ,(
kz

√
k−2

z + 1− kz

)3

=
1
8
k−3

z − 3
32
k−5

z +
9

128
k−7

z − 7
128

k−9
z +

45
1024

k−11
z − 297

8192
k−13

z

+
1001
32768

k−15
z − 429

16384
k−17

z +
5967

262144
k−19

z − 20995
1048576

k−21
z + · · · ,
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(
kz

√
k−2

z + 1− kz

)4

=
1
16
k−4

z − 1
16
k−6

z +
7

128
k−8

z − 3
64
k−10

z +
165
4096

k−12
z − 143

4096
k−14

z

+
1001
32768

k−16
z − 221

8192
k−18

z +
12597
524288

k−20
z − 11305

524288
k−22

z + · · · .

In summary, τn is of the form,(
kz

√
k−2

z + 1− kz

)n

=
1

2nkn
z

− n

2n+2kn+2
z

+
n(n+ 3)
2n+5kn+4

z
− n(n+ 4)(n+ 5)

2n+7kn+6
z

+ · · · . (87)

5.2 Expansion of iλ(−i)µkµ
z

[
sgn(kz)

√
1 + k2

z

]λ
e
iz̆0

“
sgn(kz)

√
1+k2

z−kz

”

After the expansion for τn (n = 1, 2, · · · ) is obtained, we can plug it into equation (83) to derive
an infinite expansion of the form27,

A =
∞∑

n=0

an(ikz)µ+λ−n , (where |kz| > 1), (88)

where an (n = 0, 1, 2, · · · ) are constants28 independent of kz and can be computed directly from
expanding equation (83). Note that equation (88) is a one-sided expansion: (1) the highest power
in the expansion is (ikz)µ+λ; (2) there is no lowest power. A is expanded this way so that the
total number of positive powers of kz is finite, therefore we can group them into a polynomial of
kz. This polynomial is called the tapering polynomial and is denoted as P+(z̆0, kz). The purpose
of introducing the tapering polynomial is to make sure the integrand converges to zero as kz → 0,
thus remaining Riemann integrable. The tapering polynomial can be calculated via collecting the
non-negative powers of equation (88),

P+(z̆0, kz) =
n≤µ+λ∑

n=0

an(ikz)µ+λ−n. (89)

Note that each term in equation (89) results in a Dirac δ-function (or its derivatives to a certain
order).

27This expansion is convergent for any z̆0 and z̆, although it may contains millions of terms for the range we are
interested in, for example, when z̆0 and z̆ reach several kilometers, typical for the seismic exploration.

28Due to clear physical meaning of ikz, (ikz)
2, · · · , we preferred the powers of ikz to kz itself. There is no difficulty

to achieve this since any difference can be assimilated into the constant an.

160



Transcendental integrals in multidimensional velocity independent imaging MOSRP08

In summary, the Fourier transform of the tapering polynomial is very straightforward,

1
2π

∞∫
−∞

P+(z̆0, kz)dkz =
1
2π

∞∫
−∞

n≤µ+λ∑
n=0

an(ikz)µ+λ−neikz(z̆0−z̆)dkz

=
n≤µ+λ∑

n=0

an
1
2π

∞∫
−∞

(ikz)µ+λ−neikz(z̆0−z̆)dkz

=
n≤µ+λ∑

n=0

an
∂µ+λ−n

∂(z̆0 − z̆)µ+λ−n

 1
2π

∞∫
−∞

eikz(z̆0−z̆)dkz

 =
n≤µ+λ∑

n=0

anδ
(µ+λ−n)(z̆0 − z̆).

(90)

The remaining terms in equation (88) are grouped in an infinite asymptotic expansion denoted as
P−(z̆0,kz),

P−(z̆0,kz) =
∞∑

n=µ+λ+1

an(ikz)µ+λ−n (|kz| ≥ 1). (91)

Since the tapering polynomial will produce clean and well-understood distributions like the Dirac
δ-function (and/or its derivatives), and the application of the aforementioned δ-functions into the
seismic imaging subseries will lead to fast algorithms like that of Shaw et al. (2003) or the terms
which is “1D generalizable” or “with clean partial derivatives with respect to x” presented in Liu
(2006); Liu and Weglein (2007). The introduction of computational overhead is negligible.

5.3 Well-defined discontinuities

After subtracting the tapering polynomial, our original Fourier transform in equation (76) become,

Fλ,µ(z̆0, z̆) =
n≤µ+λ∑

n=0

anδ
(µ+λ−n)(z̆0 − z̆) + FReg

λ,µ (z̆0, z̆), (92)

where in the right-hand-side of the equation (92), the first part is the linear combination of δ(z̆0−z̆),
δ′(z̆0 − z̆), δ′′(z̆0 − z̆), · · · , the second part is a Riemann integral which is finite at every depth,
denoted as29 FReg

λ,µ (z̆0, z̆), which can be calculated via,

FReg
λ,µ (z̆0, z̆) =

1
2π

∞∫
−∞

{
iλ(−i)µkµ

z

[
sgn(kz)

√
1 + k2

z

]λ
ei(z̆0sgn(kz)

√
1+k2

z−z̆kz)

−P+(z̆0, kz)ei(z̆0−z̆)kz

}
dkz. (93)

Although the FReg
λ,µ (z̆0, z̆) is finite, it is also discontinuous when z̆0 = z̆, where the δ-function clicks.

Since we have covered the δ-function singularities produced by (ikz)0, (ikz)1, (ikz)2, · · · , it is natural
to look at the highest power among the remaining expansion: (ikz)−1. Indeed this term produces

29Due to the fact that is the regularized version of the original integral. It is denoted with a superscript Reg.
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discontinuities. The proof is as follows, for an arbitrarily chosen Ξ ≥ 1, the integral below,∫
|kz |≥Ξ

ei(z̆0−z̆)kz

ikz
dkz = 2

∞∫
Ξ

sin [(z̆0 − z̆)kz]
kz

dkz

is an odd function of (z̆0− z̆). We only need to study its behavior for positive (z̆0− z̆) to understand

its properties everywhere. If we assume z̆0 − z̆ > 0, and change the integration variable to y
4
=kz ∗

(z̆0− z̆), the expression above reduces to the sine integral defined in equation (5.2.1) of Abramowitz
and Stegun (1965),

∞∫
Ξ

sin [(z̆0 − z̆)kz]
kz

dkz = 2

∞∫
(z̆0−z̆)Ξ

sin [y]
y

dy

=2

π2 −
(z̆0−z̆)Ξ∫

0

sin[y]
y

dy

 = 2 ∗
(π

2
− Si([z̆0 − z̆]Ξ)

)
.

Obviously, according to Figure (5.6) from Abramowitz and Stegun (1965), we have,

lim
(z̆0−z̆)→0+

Si([z̆0 − z̆]Ξ) = 0 (For any finite Ξ).

Consequently,

lim
(z̆0−z̆)→0+

∞∫
Ξ

sin [(z̆0 − z̆)kz]
kz

dkz = 2 ∗
(π

2
− 0
)

= π (For any finite Ξ).

The function converges to π from the right (z̆0 − z̆ = 0+). Since the function above is an odd
function of (z̆0 − z̆), it will converge to −π from the left (z̆0 − z̆ = 0−),

lim
(z̆0−z̆)→0−

∞∫
Ξ

sin [(z̆0 − z̆)kz]
kz

dkz = −2 ∗
(π

2
− 0
)

= −π (For any finite Ξ).

Since this expansion converges to different limits from the left and right. It is discontinuous when
z̆0 − z̆ = 0. This is the only discontinuity in the entire expansion30. Note that if we change the
value of Ξ, the size of the discontinuity will not change since it is not a function of Ξ. This
independency with Ξ is reasonable since Ξ is only artificially chosen and shouldn’t affect the size
of the discontinuities. In summary, the discontinuity at z̆0 = z̆ is,

lim
z̆0=z̆+0+

FReg
λ,µ (z̆0, z̆)− lim

z̆0=z̆+0−
FReg

λ,µ (z̆0, z̆) = aλ+µ+1
π − (−π)

2π
= aλ+µ+1 (94)

30First of all, the integral in the finite range
ΞR

−Ξ

dkz will be continuous. And secondly, the
R

|kz|≥Ξ

dkz integral for

(ikz)
−2, (ikz)

−3, · · · are all well-defined exponential integrals and will all be continuous.
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5.4 Interpolated integration of the Fourier integral
∫

|kz |≤Ξ

dkz

After choosing a constant Ξ > 1, we calculate the FReg
λ,µ integral in equation (93) with two steps.

First calculate the (−Ξ,Ξ) portion of integral,

FReg
λ,µ (z̆0, z̆) =

1
2π

∫
|kz |<Ξ

{
iλ(−i)µkµ

z

[
sgn(kz)

√
1 + k2

z

]λ
ei(z̆0sgn(kz)

√
1+k2

z−z̆kz)

−P+(z̆0, kz)ei(z̆0−z̆)kz

}
dkz, (95)

with the interpolated integration method documented in §3 and §4 since it is essentially a Fourier
transform from kz to z̆. The computational overhead caused by the presence of P+(z̆0, kz) is of n0

(or constant) complexity since it can be analytically evaluated. Currently in our efforts to calculate
γ̃1 and its partial derivatives to the 7th (totally 64 of them) and to the depth of 3 kilometers, the
interpolation order ℘̄ = 15 is sufficient.

The next step is documented in the next subsection.

5.5 Asymptotic expansion of the Fourier integral
∞∫
Ξ

dkz

In order to calculate the
∞∫
Ξ

dkz integral, we need only to consider the kz-values that satisfy |kz| ≥ Ξ,

and within this range, according to the definition of P−(z̆0,kz), the integrand in equation (76) can
be expressed by the asymptotic expansion of equation (91),

iλ(−i)µkµ
z

[
sgn(kz)

√
1 + k2

z

]λ
ei(z̆0sgn(kz)

√
1+k2

z−z̆kz) −P+(z̆0, kz) = P−(z̆0,kz)ei(z̆0−z̆)kz . (96)

Consequently, its integral can be calculated via,

1
2π

∫
|kz |≥Ξ

iλ(−i)µkµ
z

[
sgn(kz)

√
1 + k2

z

]λ
ei(z̆0sgn(kz)

√
1+k2

z−z̆kz) −P+(z̆0, kz)dkz

=
1
2π

∫
|kz |≥Ξ

P−(z̆0,kz)ei(z̆0−z̆)kz =
1
2π

∞∑
n=µ+λ+1

an

∫
|kz |≥Ξ

(ikz)µ+λ−nei(z̆0−z̆)kzdkz.

(97)

Each integral in equation (97) can be calculated via the well-known exponential integral. Expo-
nential integrals, e.g., equation (5.1.4) from Abramowitz and Stegun (1965), when their arguments
are chosen as i(z̆0 − z̆), are of the form,

En(i(z̆0 − z̆)) =

∞∫
1

cos[(z̆0 − z̆)kz]− i sin[(z̆0 − z̆)kz]
kn

z

dkz. (98)

For |z̆0 − z̆| ≤ 2, the analytic integration can be quickly implemented with a power series, e.g.,
equation (5.1.12) in Abramowitz and Stegun (1965). Otherwise, it can be quickly implemented
with a continued fraction, e.g., equation (5.1.22) in Abramowitz and Stegun (1965).
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5.6 Quality control of the seismic imaging operator

1. Values in z̆0 = 0.

When z̆0 = 0, the square-root complexities in equation (76) vanish and the normally very
complicated integral can be found in cosine and sine transforms from Arthur Erdélyi and
Bateman (1954). This is the first quality control procedure.

2. Tunnel digging test.

When we dig a long tunnel through a mountain, it will be much faster if two teams work
simultaneously from opposite sides of the mountain. In the end, two teams must reach the
same location. We use this idea as a quality control procedure, i.e., our integral is calculated
in two parts:

∫
|kz |≥Ξ

and
∫

|kz |<Ξ

, where Ξ is an artificial dividing line. Obviously, the final

results should agree with each other. So far, the error for this quality control check is within
10−20.

3. Verification of the derivatives from interpolation.

Our procedure can be used to calculate Fλ,µ and its various derivatives. One quality control
procedure is to verify that the derivatives do agree with the actual variation of Fλ,µ with
small amount of variation, both in terms of z̆0 and z̆.

5.7 Properties of the seismic imaging operator and its impact on the structure
of our imaging algorithm

1. Well defined discontinuity.

As demonstrated in §5.3, the function Fλ,µ is discontinuous. This discontinuity always hap-
pens at z̆0 = z̆ where the Dirac δ function clicks. And it can be derived by simply collecting
the highest power (ikz)−1; its final result is listed in equation (94).

2. Flat ocean half, violent mountain half, easily predicted beachhead and mountaintop.

The distribution Fλ,µ behaves very different in the region where z̆0 < z̆ and the region
z̆0 > z̆. We call the first region “ocean half” because with the increase of z̆0 and z̆, our
distribution becomes more flat and smooth and much closer to zero. We call the second
region the “mountain half” because the distribution shows more and more violent oscillations
with increase in z̆0 and z̆. For a fixed z̆0, the most violent variation always occurs at the limit
z̆ = z̆0. We define the “beachhead” and “mountaintop” in the (z̆0, z̆) plane as the lines that
satisfy z̆0 = z̆ + 0−, and z̆0 = z̆ + 0+, respectively because of the fact that the beachhead is
as flat and smooth as the ocean half. For large z̆0, we can safely predict the value at this
location as 0 (to be exact, the prediction error will decrease dramatically with the increase
of z̆0). Consequently, we can predict the mountaintop using the well-defined discontinuity in
equation (94).

3. Mountaintop expansion and possible closed forms.
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Although Fλ,µ and FReg
λ,µ are highly transcendental functions with daunting complexities far

beyond the functions well studied in the literature, their behavior at the diagonal region
z̆0 = z̆ is highly predictable, and the bigger the z̆0, the better the predictability.

A Taylor expansion of a 2D function gives,

f(u, v) = f(u0, v0) +
∞∑

n=1

1
n!

[(
∂

∂u
∆u+

∂

∂v
∆v
)n

f(u, v)
]

u=u0,v=v0

. (99)

In our case, for an arbitrary location (z̆0, z̆), the closest location with good approximation31

of f (and its derivatives) happens at the beachhead location (r, r) where r = z′+z
2 . Using

equation (99) with u replaced by z̆0 and v replaced by z̆, we have the closest point to start
the expansion: u0 = v0 = r = z̆0+z̆

2 , ∆u = ∆v = 1√
2

z̆0−z̆
2 = a√

2
, where a = z̆0−z̆

2 . We have the
mountaintop expansion:

FReg
−2,2(z̆0, z̆) = −1

2
(r) +

1

2
√

2

„
3+

1

2
r2

«
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4

„
3

2
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1

4
√
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„
2
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1
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1
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− 1

8

„
1
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1
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1
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1

8
√

2

„
1
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+

1
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1
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1

86400
r6

«
a5
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„
1
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1
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r3+

1

28800
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1

3628800
r7

«
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(100)

· · ·+ 1
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√

2

„
1
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r2
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r4

30240
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r6

1209600
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r8

203212800

«
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− 1
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„
r
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r5

1209600
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√

2

„
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r4
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+

r6

65318400
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r8
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r10
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«
a9

− 1
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„
r
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+

r3
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+
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+

r7

4572288000
+

r9
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+

r11
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«
a10

+ · · ·

(101)

This is a polynomial approximation for the most critical region in the imaging operator,
where the δ-function clicks and the rapidest variation occurs.

First let’s look at the highest-order term (in terms of r) in each expansion the ratio between
the coefficients of consecutive terms are 2=1 × 2, 6=2 × 3, 12=3 × 4, 20=4 × 5, 30=5 × 6,
42=6× 7, 56=7× 8, 72=8× 9, 90=9× 10, 110=10× 11, · · · .
Collecting the highest power in each term, we can guess the following closed-form,

−1
2
r

∞∑
n=0

(−ra/
√

2)n

(n!)2 (n+ 1)
. (102)

It is obvious that the second highest term in each expansion follows the same ratio rule. And
we can similarly guess the closed-form for the second highest term,

3
2
√

2
a

∞∑
n=0

(−ra/
√

2)n

(n!)2 (n+ 1)
. (103)

31The approximation is reached by three steps: (1) approximate the beachhead value of f(r, r) as zero; (2) calculate
the discontinuity by equation (94); (3) add the discontinuity to the beachhead value to get the value of mountaintop.
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Figure 1: The accurate (in green) and approximate (in red) seismic imaging operator γ̃1 when the hori-
zontal wavenumber (km = 0.1104 and the target depth z = 1875.0m), the horizontal axis is the
integration depth z′.

6 Numerical examples

We had tested the accurate seismic imging operator γ̃1 against our previously straightforward
implementation, which can be regarded as using an approximate seismic imaging operator calculated
by a truncated discrete Fourier transform over kz. The corresponding seismic imaging operators
are illustrated in Figure (1), and their difference is shown in Figure (2). From Figure (1), it is
obvious that the accurate operator is flat and smooth when z′ < z = 1875.0m and discontinuous at
z′ = z = 1875.0m. The approximate operator shows typical Gibbs oscillation at the discontinuity.
It is obvious that the accurate seismic imging operators, although has a much more frequency (kz)
content, are much simplier than and smoother than their approximation by a truncated Fourier
integral. As an example, we test our accurate seismic imaging operator on a 2D salt model in
Figure (3). For this model, we use a homogeneous migration velocity c0 = 1500m/s. Two typical
shot gathers with xs = ±2000m are shown in Figure (4). In Figure (5) is the α1 we previously
calculated in the (km, kz) domain with an upper limit for both km and kz values, which is equivalent
to using the aforementioned approximate seismic imaging operator. After obtaining the accurate
seismic imaging operator γ̃1 we obtained an improved α1 image in Figure (7).

After the calculation it is nature to apply equation (2.34) of Liu (2006) to calculate the higher-
order imaging subseries (HOIS). The corresponding HOIS results, obtained from approximate γ̃1

operator and accurate γ̃1 are shown in Figure (9) and Figure (10), respectively.
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Figure 2: The difference between the accurate and approximate seismic imaging operator when the hori-
zontal wavenumber km = 0.1104 and the target depth z = 1875.0m, the horizontal axis is the
integration depth z′

Figure 3: Left: the salt model. Right: salt model with geological boubdaries (red lines). As a benchmark,
the geological boundaries will be used in Figure (6), (8), (11), and (12) to demonstrate the
effectiveness of the imaging algorithm.
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Figure 4: Left: shot gather with xs = −2000(m). Right: shot gather with xs = 2000(m). In both shot
gathers, conflicting hyperbolas are present which will cause ambiguities in velocity analysis.
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Figure 5: α1 obtained from approximate seismic imaging operator γ̃1.

169



Transcendental integrals in multidimensional velocity independent imaging MOSRP08

Figure 6: α1 obtained from approximate γ̃1 operator with benchmark geological boundaries (in red).
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Figure 7: α1 obtained with accurate seismic imaging operator γ̃1.
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Figure 8: α1 obtained from accurate γ̃1 operator with benchmark geological boundaries (in red).
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Figure 9: The higher-order imaging result obtained from approximate γ̃1 operator, the ∂
∂z operation was

taken to emphasize the geological boundary.
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Figure 10: The higher-order imaging result obtained from accurate γ̃1 operator, the ∂
∂z operation was taken

to emphasize the geological boundary.
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Figure 11: The image in Figure (9) overlayed with benchmark geological boundaries (in red).
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Figure 12: The image in Figure (10) overlayed with benchmark geological boundaries (in red).
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7 Conclusions and discussions

Accurate application of the seismic imaging operators for a laterally varying earth has been studied
and developed for α1 and α2. The seismic imaging operators obtained through full bandwidth
integration has been domonstrated to be much simpler and smoother than its band-limited ap-
proximation. Polynomial approximations have been identified in the most critical region of the
seismic imaging operators, which will help the future effort to obtain more economical closed-form
solutions. Encouraging numerical examples with α1 demonstrated the benefits of the accurate ap-
plication of seismic imaging operators in better deal with phenomena associated with rapid lateral
variations, for example, diffractions.
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Direct non-linear Q compensation of primaries reflecting from a
stratified, 2-parameter absorptive medium

K. A. Innanen and J. E. Lira, M-OSRP, University of Houston

Abstract

Q compensation of primaries that have reflected from a stratified, absorptive-dispersive medium
may be cast as a direct, non-linear inverse scattering problem. If the reference medium is chosen
to be non-attenuating and homogeneous, a candidate Q compensation procedure of this type
may be derived which is highly non-linear in the data, but which operates in the absence of prior
knowledge of the properties of the subsurface, including its Q structure. It is arrived at by, first,
performing an order-by-order inversion of a chosen subset of the Born series, second, isolating
and extracting a component of the resulting non-linear inversion equations here argued to enact
Q compensation, and third, trivially mapping the result back to data space. Once derived, the
procedure can be understood in terms of the non-linear interaction of the input primary reflection
data: the attenuation of deeper primaries is corrected by an operator built (automatically) using
the angle- and frequency-variations of all shallower absorptive-dispersive primaries. A simple
synthetic example demonstrates the viability of the procedure in the presence of densely sampled,
broad-band reflection data.

1 Introduction

In this paper we continue to progress and examine candidate algorithms for direct non-linear Q
compensation of primaries propagating through, and reflecting from, unknown absorptive struc-
tures. The following paper in this volume (Lira et al.) includes an analytic example of an earlier
form of the Q compensation algorithm; the current paper focuses on the theoretical development
and numerical examples.

We begin with a particular definition of the problem. This is a necessary step, since the state-of-
the-art and precise goals of deterministic Q compensation are difficult to neatly pin down; recovery
from the resolution-compromising effects of absorption is cast within many otherwise distinct pro-
cedures, such as full waveform inversion (e.g., Dahl and Ursin, 1992; Ribodetti and Virieux, 1998;
Causse et al., 1999; Hicks and Pratt, 2001; Dasios et al., 2004), downward continuation/imaging
(e.g., Mittet et al., 1995; Song and Innanen, 2002; Wang, 2003; Mittet, 2007), and deterministic
deconvolution (e.g., Bickel and Natarajan, 1985; Hargreaves and Calvert, 1991; Wang, 2006; Zhang
and Ulrych, 2007). We define Q compensation as: the estimation of the primary reflection data
set that would have been measured in the absence of the absorptive component of wave propagation;
i.e., we will pose it such that it is maximally isolated from the other tasks of seismic inversion, as
recommended by Hargreaves and Calvert (1991).

Building on earlier studies (Innanen and Weglein, 2003, 2005; Innanen and Lira, 2008), we seek
such an algorithm by making use of inverse scattering, a framework with a history of providing
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procedures that trade non-linearity for accurate input medium property information, for processing
both multiples (as mentioned above) and primaries (Weglein et al., 2001, 2003; Shaw et al., 2004;
Shaw, 2005; Zhang and Weglein, 2005; Liu et al., 2006; Liu, 2006; Zhang, 2006). The end goal is to
define a processing procedure, which, absent an input Q estimate, returns a Q compensated, pre-
stack primary data set due to waves reflecting from an an-elastic medium with arbitrary variability
in three dimensions. Here we derive and numerically test a candidate algorithm which is appropriate
for primaries reflecting from a simpler medium, a 2-parameter absorptive medium with arbitrary
variability in depth. Since we do not take any steps during the derivation which could not—at
least in principle—also be taken under conditions of more complex heterogeneity or model-type,
this result may be regarded as a potentially useful way-point towards the end goal.

The inverse scattering series, absent manipulation, takes as its input measurements of a scattered
field, and creates as its output the perturbation that gave rise to the field. This runs counter to
the goals of Q-compensation as we define it, because:

1. The scattered field in general contains all reflected events, including primaries and multiples,
whereas (since there exist reliable methods for multiple removal which are not sensitive to
the elasticity/anelasticity of the subsurface) we will perform inverse operations on primaries
only;

2. Of all the processing steps enacted upon primaries within the full inverse problem, we wish
one only, the correction for absorptive propagation, to actually be carried out; and

3. We wish to estimate not the perturbation, a model-like quantity, but, rather, a data-like
quantity, a set of reflected primaries that have been Q-compensated.

After posing the scattering problem to accommodate absorptive media, most of the strategy in the
algorithm development we present is geared towards managing these three issues. Our route is as
follows.

We begin by creating a forward modeling procedure for absorptive-dispersive primaries based on
the Born series. The result is a non-linear scattering-based series calculation of primaries only in
a layered absorptive-dispersive medium, which is accurate for large, extended perturbations. This
is useful for our current purposes, because such partial series may be inverted, order-by-order, in
exactly the same fashion as the full inverse scattering series, to generate non-linear direct inversion
procedures that take as their input data reflected primaries. We continue, then, by carrying out
this inversion upon the absorptive-dispersive primary series above. The resulting non-linear inverse
scattering equations, which construct approximations of the actual wavespeed and Q perturbations
in the medium, are therefore of a form that addresses item (1.) above.

We next note that, because of the direct, analytic nature of these inverse equations, it is possible to
make informed conjectures regarding where and how in the mathematics the correction for Q takes
place, and by extension how to suppress all of the other non-linear operations. Doing so, we argue,
amounts to an extraction and separate execution of the Q-compensation part of the full inversion
of primary data; this addresses item (2.) above.
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Finally, we point out that given a homogeneous reference medium, the relationship between the
linear components of the parameter perturbations and the data is very simple: essentially a Fourier
transform. In the second step above, all non-linear aspects of the processing, apart from those that
we argue are concerned with Q-compensation, have been suppressed. It follows that in all respects
apart from absorption, the output maintains a simple, linear relationship with the data. We map
this output trivially back to data-space with a change of variables and an inverse Fourier transform.
The final result, which has addressed item (3.) above, is deemed to be the Q-compensated data
set.

Direct non-linear Q compensation

We define the reference medium such that the Green’s functions for a source at xs and a receiver
at x at angular frequency ω obey the scalar (non-absorptive) equation[

∇2 +
ω2

c20

]
G0(x|xs;ω) = δ(x− xs). (1)

The solution to equation (1) in 2D for a line source at (xs, zs) and a line receiver at (xg, zg), is
expressible analytically, as, e.g.,

G0(xg,zg, xs, zs, ω) =
1
2π

∫ ∞

−∞
dk′xe

ik′x(xg−xs) e
iq′|zg−zs|

i2q′
, (2)

where q′ = ω/c0(1 − c20k
′2
x /ω

2)1/2. We define the wave field in the actual medium as satisfying a
two parameter (nearly-constant Q) absorptive wave equation:[

∇2 +K2
]
G(x|xs;K) = δ(x− xs), (3)

where, following, e.g., Aki and Richards (2002),

K ≡ ω

c(x)

[
1 +

F (ω)
Q(x)

]
, (4)

and

F (ω) =
i

2
− 1
π

ln
(
ω

ωr

)
. (5)

In the inverse developments to follow, F is assumed known, and Q as assumed unknown. Treating
the quantities in square brackets in equations (1) and (3) as the operators L0 and L respectively
(see, e.g., Weglein et al., 2003), and defining two dimensionless perturbation quantities (Innanen
and Weglein, 2007):

α(x) = 1− c20(x)
c2(x)

, β(x) =
1

Q(x)
, (6)
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we arrive at a perturbation operator appropriate for this Q problem:

V = L0 − L ≈ ω2

c20
[α(x)− 2F (ω)β(x)] . (7)

We next restrict the medium such that α and β vary in depth only, and use the above quantities
to form a partial Born series:

ψP = ψ1 + ψ2 + ψ3..., (8)

whose terms are judged, via arguments based on relative scattering geometry to construct reflected
primaries that have been distorted by Q. This is a 2-parameter extension of the scalar acoustic
construction discussed by Innanen (2008). At first order, for instance, after Fourier transforming
over xs, we have

ψ1(ks, ω) =
∫
dx′
∫
dz′G0(xg, zg, x

′, z′, ω)k2γ(z′)G0(x′, z′, ks, zs, ω)

=− 1
4 cos2 θ

∫
dz′ei2qsz′γ(z′),

where

γ(z) = α(z)− 2F (ω)β(z),

ks is the Fourier conjugate of xs, qs = ω/c0(1−c20k2
s/ω

2)1/2, and θ = sin−1 ksc0
ω , and for convenience

we have set xg = zg = zs = 0. For another instance, at second order, we have

ψ2(ks, ω) = −(−i2qs)
8 cos4 θ

∫
dz′ei2qsz′γ(z′)

(∫ z′

dz′′γ(z′′)

)
.

Continuing with this program of retention and rejection at all orders, the details of which are
included in Appendix A, we produce a series for attenuated primaries, ψP , which we associate with
the measured data D ≡ ψP :

D(ks, ω) =
−1

4 cos2 θ

∫
dz′ei2qsz′γ(z′)

∞∑
n=0

1
n!

(
−iqs
cos2 θ

∫ z′

dz′′γ(z′′)

)n

. (9)

Computing and combining a large number of these terms through equation (9) generates an analytic
expression for the primary data.

We next form an inverse series for the perturbations α and β, in which the n’th term is defined to
be n’th order in the primary data modeled above. Let this series be γ = γ1 + γ2 + ..., that is

[α(z)− 2F (ω)β(z)] = [α1(z)− 2F (ω)β1(z)] + [α2(z)− 2F (ω)β2(z)] + ... .

This is substituted into equation (9), and like orders are equated (Innanen, 2008), similarly to
Carvalho’s derivation of the full inverse scattering series (Carvalho, 1992; Weglein et al., 1997).
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The inverse solution is generated by sequentially solving for and summing contributions to the
perturbation over many orders. At first order, we have

D(ks, ω) =
−1

4 cos2 θ

∫
dz′ei2qsz′ [α1(z′)− 2F (ω)β1(z′)]. (10)

Innanen and Weglein (2007) describe in detail how this equation may be used to separately deter-
mine α1 and β1 as functions of pseudo-depth. The process of linear separation requires the data
to be combined across sets of incidence angles ϑ = {θ1, θ2, ...}, and may if desired also involve a
weighting scheme W , hence in general the outputs must be considered functions of these variables
also:

α1 = α1(z|ϑ,W ),
β1 = β1(z|ϑ,W ).

(11)

The quantities α1 and β1 have qualitative interpretations that depend on the size and extent of
the actual perturbations α and β. If the actual perturbations are small and transient, and some
scheme of averaging (e.g., Clayton and Stolt, 1981) is invoked to manage the over-determinedness
of the problem, these quantities can be considered model-like, and, if interpreted as inverse Born-
approximate model parameter estimates, represent an end-point of the procedure. Alternatively, if
the perturbation is large and extended, which in this paper we assume is the case, the quantities
α1 and β1 bear scant resemblance to the actual perturbations α and β. In fact, they are data-like:
they depend on experimental variables, and they have amplitudes and discontinuities that are only
distantly and non-linearly related to those of α and β, while being closely and linearly related to
those of the reflected primary events. For this reason, in this paper we refer to the α1, β1 quantities
as being essentially linearly transformed and weighted versions of the input primary data.

With these things in mind, continuing next with the direct non-linear inversion, at second order,
we find a relationship between α1, β1 and α2, β2:

1
4 cos2 θ

∫
dz′ei2qsz′ [α2(z′|ϑ,W )− 2F (ω)β2(z′|ϑ,W )]

=− [−i2qs]
8 cos4 θ

∫
dz′ei2qsz′ [α1(z′|ϑ,W )− 2F (ω)β1(z′|ϑ,W )]

×

(∫ z′

0
dz′′[α1(z′′|ϑ,W )− 2F (ω)β1(z′′|ϑ,W )]

)
.

This continues at third order, wherein a relationship between α1, β1 an α3, β3 is determined, and
beyond. By the third or fourth order, a pattern is discernable in the mathematics that allows
the n’th order inverse equation to be straightforwardly predicted. Summing the equations over all
orders (by assuming the continuation of this pattern), and defining

αP (z|ϑ,W ) ≡
∞∑

n=0

αn+1(z|ϑ,W ),

βP (z|ϑ,W ) ≡
∞∑

n=0

βn+1(z|ϑ,W ),
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there results a closed form set of non-linear equations

αP (kz, θ|ϑ,W )− 2F (kz, θ)βP (kz, θ|ϑ,W ) =∫
dz′e

−ikz

h
z′+ 1

2 cos2 θ

R z′
0 dz′′[α1(z′′|ϑ,W )−2F (kz ,θ)β1(z′′|ϑ,W )]

i
[α1(z′|ϑ,W )− 2F (kz, θ)β1(z′|ϑ,W )],

(12)

where kz ≡ −2qs is the Fourier conjugate of depth z. This represents a direct inversion of the
primary data, exact to within the accuracy of the primary approximation series in equation (9),
and appropriate for a layered, 2-parameter, absorptive-dispersive medium. Further details of the
derivation of equation (12) are included in Appendix B. The quantities αP and βP are the non-
linearly determined profiles associated with c(z) and Q(z); each can in principle be independently
determined via equation (12) if desired, which may itself be of independent interest. This is shown
in Appendix C.

However, our current goal is to carry out a single inverse task, that of compensating for Q, and to
ultimately recover a data set, not a set of parameter perturbations. To accomplish these things, we
examine equation (12) more closely. We note that the outputs, αP and βP , would be related linearly
to the inputs, α1 and β1, except that α1 and β1 also appear in the argument of the exponential
function in the integrand. Here all of the non-linearity of the inversion resides. We then make the
following statements. The principal role of α1 in the argument of the exponential is to non-linearly
accomplish aspects of the inversion associated with wavespeed deviations between the reference and
actual media (e.g., to correctly locate linearly misplaced reflectors at depth). And, the principal
role of β1 in the argument is to accomplish aspects of the inversion associated with deviations
between reference and actual Q values, meaning, predominantly, compensation. The arguments
for these statements are twofold. First, equation (12) is a 2-parameter version of a scheme derived
elsewhere for a 1-parameter acoustic medium, i.e., involving α only (Innanen, 2008). Those 1-
parameter equations include an exponential function with an argument identical to the first (α1)
term in the exponential of equation (12). Since the β1 component of the exponential function
appears only when absorptive inverse issues appear, we ascribe to it the role of managing these
issues. And second, this component of the exponential function, by virtue of the complex nature of
the coefficient F , is the only part of the function that grows exponentially, and therefore alone has
the numerical capability to perform the (ill-conditioned) boosting of high frequencies characteristic
of Q compensation. We will now permit these two statements to lead us to a proposed form of a
Q compensation algorithm, and discuss the possibility that they are only approximately true (and
the consequences of this) in the discussion section of this paper.

We peremptorily set α1 in the argument of the exponential to zero, and suggest that as a conse-
quence: (1) the (now altered) outputs αP and βP undergo non-linear correction for the attenuation
and dispersion associated with propagation in an absorptive medium, but (2) they undergo linear
treatment in all other respects.

Calling the partially treated outputs αQ and βQ, we have instead

αQ(kz, θ|ϑ,W )− 2F (kz, θ)βQ(kz, θ|ϑ,W )

=
∫
dz′e

−ikz

h
z′−F (kz,θ)

cos2 θ

R z′
0 dz′′β1(z′′|ϑ,W )]

i
[α1(z′|ϑ,W )− 2F (kz, θ)β1(z′|ϑ,W )].

(13)
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By assumption, the form of these equations ensures that only Q-compensation (and not, say, any
re-positioning of reflectors away from their linearly-determined depths) takes place as the data
(through α1 and β1) is processed.

Finally, we will argue for an approach to make the output of this processing a data-like quantity.
Equation (13) follows the basic template

A =
∫
eBC. (14)

We proceed by comparing this template, and the associated elements of equation (13), to equation
(10). Evidently if β1 in the exponential function were set to zero we would exactly recover the data
by carrying out the integral in equation (13). If our previous suggestion is correct, i.e., that β1 6= 0
in the exponential is responsible solely for Q compensation, then it would appear that the left hand
side is already a data-like quantity, different only from the input data set in that its amplitudes
have been corrected for absorption and dispersion.

Hence, after constructing the input C and the operator B by linearly transforming and weighting
the data, and computing the right-hand side of equation (13), we use the linear relationship defined
in equation (10) to map, not α1 and β1, but rather the left-hand side of equation (13), back to
the (ks, ω) domain, through, in essence, a change of variables. Our suggestion is that this mapped
quantity is a Q-compensated data set in the Fourier domain. That is, we define

Dcomp(kz, θ|ϑ,W ) ≡ − 1
4 cos2 θ

[αQ(kz, θ|ϑ,W )− 2F (kz, θ)βQ(kz, θ|ϑ,W )], (15)

where ϑ = ϑ(θ, kz), W = W (θ, kz). Changing variables back to ks, ω and inverse Fourier trans-
forming, the Q compensated data set is estimated as

Dcomp(xs, t) =
(

1
2π

)2 ∫ ∫
dksdωe

iksxseiωtDcomp(ks, ω). (16)

Synthetic example

To exemplify this procedure, we construct a simple synthetic primary data set corresponding to the
two-interface absorptive-dispersive model in Figure 1. The resulting primary data (Figure 2, upper
panel) are used as input to the linear inverse scattering equations, which involves a transformation
and weighting thereof. These data-like quantities are then used to construct both the operator eB

and the operand C as in equation (14). The Q-compensated data set (Figure 2, lower panel) is
formed by transforming the result, A in equation (14), to the (ks, ω) domain, and then performing
straightforward inverse Fourier transforms. The Q-compensated results are compared in detail with
the input in Figure 3 for three offsets, 0m, 170m, and 335m. For illustration purposes, after all
processing is complete we convolve the input and output with a Ricker wavelet, which is a cosmetic
step; the procedure assumes the source wavelet has been deconvolved from the input data. The
dispersion correction, and the clear similarity of the output to the idealized, non-attenuated test
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trace, indicate that the algorithm is largely achieving its stated goal. We note a slight under-
correction at large angle.

In equations (13) and (15), there are two sets of angles: an input set (ϑ) used to separate α1 and
β1, and to construct the correction operator, and an output angle θ, which is varied to recover
the full, corrected pre-stack data set. Neither inverse scattering theory nor our manipulations of
it specifically impose any relationship between the two. For the full inverse scattering parameter
estimation problem (Appendix C), this freedom might be exploited for purposes of regularization,
or to incorporate prior information. However, for the problem at hand, empirical study suggests
that input angles ϑ which “cluster” around the output angle θ be used. We have decided, that is,
to correct particular angle and wavenumber components of the data using the data at those same
components and their immediate neighbors. In the example above, the input set ϑ = {θ, θ + ∆θ}
(where ∆θ is the smallest provided by the synthetic data after the change of variables) was used for
each θ of corrected data. The angle pairs were weighted equally (W = 1); little of the additional
freedom W provides to precondition the data has been explored as yet.

Noisy examples have not been included at this proof-of-concept stage; we have found our approach
to share the basic response to noise of all standard Q compensation schemes. We point out that (as
is often done in standard Q compensation) with a quick alteration to the function F as it appears in
the argument of the exponential in equation (12), this algorithm may be transformed immediately
into a “dispersion compensation” procedure, which is well-conditioned and largely unaffected by
noise.
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Figure 1: Two interface absorptive-dispersive model.
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Figure 2: Top panel: synthetic pre-stack input primary data from the model in Figure 1 (decimated for
purposes of display); bottom panel: Q-compensated output data (likewise decimated). The phase
rotation of the shallower primary is caused by the strong absorptive reflection coefficient associated
with the top interface.
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Figure 3: Detail of Q compensation for three offsets of pre-stack data. Bottom trace in each panel is
input, the middle trace is the output, and the top trace, for benchmarking, is an idealized trace
constructed without Q, and normalized to the maximum value of the output traces.
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Discussion and conclusions

We choose as the definition of Q compensation, the estimation of an output data set that is identical
to the input, except that all absorptive propagation effects are absent. We present a candidate
scheme, based on non-linear inverse scattering, whose output, we argue, fits this definition. In
applying it, a correction operator is automatically constructed from the data themselves, with no
requirement for an input estimate of subsurface medium parameters, including its Q structure.
Synthetic examples illustrate the scheme in action, and provide proof-of-concept level evidence of
the validity of the approach.

The behavior of this algorithm can be interpreted in terms of data events interacting non-linearly.
Consider again the schematic form

A =
∫
eBC, (17)

where

A = αQ(kz, θ|ϑ,W )− 2F (kz, θ)βQ(kz, θ|ϑ,W ),

B = −ikz

[
z′ − F (kz, θ)

cos2 θ

∫ z′

0
dz′′β1(z′′|ϑ,W )

]
,

C = α1(z′|ϑ,W )− 2F (kz, θ)β1(z′|ϑ,W ),

(18)

and recall that α1 and β1 are effectively linearly transformed, weighted forms of the data in
the pseudo-depth domain (i.e., vertical two-way travel-time scaled with the constant reference
wavespeed c0). The quantity C is being operated on by

∫
eB to produce A. One frequency-

wavenumber component of the output data (ω and ks, via kz and θ), A, comes from contributions
from the input data C at all pseudo-depths. For each contributing depth, the C component is
boosted by eB, which from equation (18) can be seen to be the cumulative influence of the values
of β1 that are shallower than the contributing depth. The quantities β1 and B are constructed
from the angle and frequency dependence of the primaries in the input data. Therefore, this Q
compensation operator, acting on a given primary, may be understood to have been constructed
from the cumulative angle and frequency variations (i.e., the generalized AVO/AVA behavior) of
all shallower primaries.

We have made two major assumptions in deriving the scheme:

1. That, by suppressing certain components of the full non-linear inversion equations derived
from inverse scattering, we isolate the Q compensation activity inherent to the inversion;

2. That, with trivial linear transformation and changes of variable, the output of this isolated
inverse step can be treated as an equivalent data set, different only from the input in the lack
of absorption in the primary events.

The soundness of these assumptions is likely best argued for with success in testing, some of which
we have provided with our proof-of-concept example. But, we might already anticipate that slightly
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more sophisticated choices could ultimately lead to more accurate results, in particular with respect
to (1.) above. Part of the argument for isolating and extracting the Q compensation component of
the inverse equations lay in comparing the 2-parameter absorptive system of inverse equations with
its 1-parameter acoustic counterpart. But the 2-parameter linear inverse problem, by which we
determine the correction operator, is subject to phenomena not shared by 1-parameter problems,
for instance, leakage, or the tendency for one parameter’s actual variations to be accounted for
with variations in multiple linearly estimated parameters (discussed for the absorptive problem by
Innanen and Weglein, 2007). Study of this issue may in the future lead to a more sophisticated
program for isolation of the absorption compensation component of the non-linear equations.

Direct, non-linear methods bring a greatly reduced requirement for prior information as compared
to their linear counterparts. But they demand broadband, densely sampled, wide-aperture, de-
ghosted, deconvolved (of the source wavelet), and demultipled data in return. Data fidelity, band-
width and coverage are the first requirements in considering methods such as this one. The data
set used in the synthetic example is broad-band, and includes low (sub-Hz) frequencies (although
not close to zero frequency–the nearly constant Q model we are using in fact diverges at and near
that limit). The requirement for this kind of data is typical of non-linear, wave theoretic inverse
methods. The best outcome will result from actual acquisition of maximally low frequency data,
of course; however, various assumptions, for instance that of a piecewise-constant overburden, can
additionally be made, removing the sensitivity to cut-off of low frequencies.

Two other issues are at the forefront when it comes to contemplating field data application of
an algorithm of this kind. The first has to do with the way in which the data are interrogated
for information in constructing the operator (B in equation (14)), which is described in detail by
Innanen and Weglein (2007). Briefly, it is the frequency- and angle-dependence of the transmission-
altered reflection coefficients of the primaries (as we have stated above, loosely a brand of AVO/AVA
behaviour specific to absorptive-dispersive media) that drives the construction of the operator. That
this behavior exists is a straightforward prediction of wave theory. However, it may appear as subtle
variations in field data. Detecting it is critical to the procedure.

The second is a consequence of the algorithm’s interest in amplitude variations in the data. As it
stands, the algorithm considers data to be due to a layered, 2-parameter (“an-acoustic”), absorptive-
dispersive medium. When that is true, as in our synthetic examples, the results are of high quality.
When that is (at best) only approximately true, as in a seismic field data application, the results
will presumably suffer. The basic framework and arguments underlying this candidate direct non-
linear Q compensation procedure have been purposefully chosen never to fundamentally restrict
the results to either an-acoustic or layered (1D) media. However, some specific aspects of the
procedure, for instance the availability of closed forms, are a consequence of these simplifications.
A clear next step is to alter the construction of the corrective operator to be in accordance with a
more suitable anelastic, and heterogeneous medium model, although we anticipate a greater degree
of algorithm complexity as a result.
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Appendix A: Primaries in a layered absorptive medium

In this appendix we take the scattering quantities defined in the body of the paper, and use them
to construct the first three terms in the absorptive-dispersive Born series. Arguments from relative
scattering geometry are used to extract a subset of terms from this series, which are adjudged to
construct only the absorptive-dispersive primaries. Patterns in these terms are used to deduce a
full non-linear absorptive-dispersive primary approximation.

We proceed assuming a non-absorptive reference medium. For waves at oblique incidence (i.e.,
a non-zero source plane wave angle θ) above a layered absorptive medium, with reflected waves
detected at a lateral line receiver location xg, the first order term of the Born series is

ψ1(xg, zg, ks, zs, ω) =
∫
dx′
∫
dz′G0(xg, zg, x

′, z′, ω)k2γ(z′)G0(x′, z′, ks, zs, ω)

= −1
4
k2

q2s
e−iqs(zg+zs)eiksxg

∫
dz′ei2qsz′γ(z′),

(19)

where

γ(z) = α(z)− 2F (ω)β(z). (20)

This term constructs only primaries, and as such is kept in full as the first order term in the primary
series also. For convenience we set xg = zg = zs = 0, and rename the linear term ψ1P :

ψ1P (ks, ω) = − 1
4 cos2 θ

∫
dz′ei2qsz′γ(z′). (21)
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The second order term of the Born series is also needed in its entirety in the primary approximation.
We have, again with xg = zg = zs = 0,

ψ2P (ks, ω) =− (−i2qs)
16 cos4 θ

∫
dz′eiqsz′γ(z′)

∫
dz′′eiqs|z′−z′′|γ(z′′)eiqsz′′

=− 1
8 cos4 θ

(−i2qs)
∫
dz′ei2qsz′γ(z′)

(∫ z′

dz′′γ(z′′)

)
.

(22)

At third order, we begin with the full Born series term

ψ3(ks, ω) =

− (−i2qs)2

64 cos6 θ

∫
dz′eiqsz′γ(z′)

∫
dz′′eiqs|z′−z′′|γ(z′′)

∫
dz′′′eiqs|z′′−z′′′|γ(z′′′)eiqsz′′′ ,

(23)

but reject the component for which the “middle” scattering location z′′ is shallower than both z′

and z′′′, which begins the construction of multiples (Weglein et al., 1997). This means rejecting
one of the four components of equation (23) that arise when the absolute value bars are evaluated
case-wise. Retaining the other three components, we have

ψ3P (ks, ω) = −(−i2qs)2

64 cos6 θ

∫
dz′ei2qsz′γ(z′)

∫ z′

dz′′γ(z′′)
∫ z′′

dz′′′γ(z′′′)

= −(−i2qs)2

32 cos6 θ

∫
dz′ei2qsz′γ(z′)

(∫ z′

dz′′γ(z′′)

)2

,

(24)

where again for convenience xg = zg = zs = 0 (for cases involving non-zero source receiver depths,
or several xg values, the simple exponential factors outside the integrals may be easily re-instated).
The pattern visible from orders 1–3 persists at higher order. Collecting all of terms that fit the
same pattern creates an approximation of primaries appropriate for large, extended absorptive-
dispersive perturbations. The approximation is a straightforward extension of the scalar (acoustic)
approximation discussed by Innanen (2008). Calling the approximation ψP , we have

ψP (ks, ω) =
∞∑

n=0

ψnP (ks, ω)

= − 1
4 cos2 θ

∫
dz′ei2qsz′γ(z′)

∞∑
n=0

1
n!

(
− iqs

cos2 θ

∫ z′

dz′′γ(z′′)

)n

.

(25)

This may be summed to closed form, as was done in direct non-linear imaging by Shaw et al. (2004):

ψP (ks, ω) = − 1
4 cos2 θ

∫
dz′e

i2qs

h
z′−(1/2) cos−2 θ

R z′ dz′′γ(z′′)
i
γ(z′). (26)

In this paper, the summed form is of less significance, since our aim will be to perform an order
by order inversion. As the key result of this appendix, then, we have the series in equation (25),

195



Direct non-linear Q compensation for stratified media MOSRP08

expressed explicitly in terms of the wavespeed and Q perturbations α and β:

ψP (ks, ω) =−
∫
dz′

ei2qsz′

4 cos2 θ
[α(z′)− 2F (ω)β(z′)]

×
∞∑

n=0

1
n!

(
−iqs
cos2 θ

∫ z′

dz′′[α(z′′)− 2F (ω)β(z′′)]

)n

.

(27)

Appendix B: Direct non-linear absorptive inversion

In this appendix we perform a direct, order-by-order inversion of the absorptive-dispersive primary
approximation derived in Appendix A. We assume that the data (1) contain only primaries, (2)
have been deconvolved of the source wavelet, and (3) have been deghosted. These assumptions
are typical for direct non-linear primary algorithms based on the inverse scattering series (Weglein
et al., 2003). If this is the case, and if the perturbations α and β are of such a size and extent that
equation (27) is accurate, we may write

D(ks, ω)

=− 1
4 cos2 θ

∫
dz′ei2qsz′ [α(z′)− 2F (ω)β(z′)]

− [−i2qs]
8 cos4 θ

∫
dz′ei2qsz′ [α(z′)− 2F (ω)β(z′)]

(∫ z′

0
dz′′[α(z′′)− 2F (ω)β(z′′)]

)

− [−i2qs]2

32 cos6 θ

∫
dz′ei2qsz′ [α(z′)− 2F (ω)β(z′)]

(∫ z′

0
dz′′[α(z′′)− 2F (ω)β(z′′)]

)2

+ ...,

(28)

where θ and qs are particular arrangements of experimental variables ks and ω:

θ = sin−1 ksc0
ω

,

qs =
ω

c0

√
1− k2

sc
2
0

ω2
.

(29)

The aim in the remainder of this appendix will be to directly invert equation (28).

An inverse series for absorptive primaries

We form an inverse series for the perturbations α and β, in which the n’th term is defined to be
n’th order in the primary data modeled in equation (27). Let this series be

[α(z)− 2F (ω)β(z)] = [α1(z)− 2F (ω)β1(z)] + [α2(z)− 2F (ω)β2(z)] + ... . (30)
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This is substituted into equation (28), and like orders are equated (Innanen, 2008), in a manner
similar to Carvalho’s derivation of the full inverse scattering series (Carvalho, 1992). At first order
we have

D(ks, ω) = − 1
4 cos2 θ

∫
dz′ei2qsz′ [α1(z′)− 2F (ω)β1(z′)]. (31)

At second order, we have

1
4 cos2 θ

∫
dz′ei2qsz′ [α2(z′)− 2F (ω)β2(z′)]

=− [−i2qs]
8 cos4 θ

∫
dz′ei2qsz′ [α1(z′)− 2F (ω)β1(z′)]

(∫ z′

0
dz′′[α1(z′′)− 2F (ω)β1(z′′)]

)
.

(32)

At third order, we have

1
4 cos2 θ

∫
dz′ei2qsz′ [α3(z′)− 2F (ω)β3(z′)]

=− [−i2qs]
8 cos4 θ

∫
dz′ei2qsz′ [α1(z′)− 2F (ω)β1(z′)]

(∫ z′

0
dz′′[α2(z′′)− 2F (ω)β2(z′′)]

)

− [−i2qs]
8 cos4 θ

∫
dz′ei2qsz′ [α2(z′)− 2F (ω)β2(z′)]

(∫ z′

0
dz′′[α1(z′′)− 2F (ω)β1(z′′)]

)

− [−i2qs]2

32 cos6 θ

∫
dz′ei2qsz′ [α1(z′)− 2F (ω)β1(z′)]

(∫ z′

0
dz′′[α1(z′′)− 2F (ω)β1(z′′)]

)2

.

(33)

This continues. Just as in the full inverse scattering series, the sequential direct solution for
perturbation components at each order, followed by their summation, produces the desired solution.
Our approach will be to carry out the inversion explicitly on the first three orders only, thereafter
deducing a pattern that holds over all orders.

First order

The construction of the first order components of the absorptive-dispersive perturbations α1 and
β1 from the data (i.e., the solution of equation (31)), and the resulting issues of conditioning,
detectability, and relationships with the actual medium perturbations, have been described in
detail by Innanen and Weglein (2007), and will not be extensively reviewed here. Briefly put, two
profiles, α1(z|ϑ,W ) and β1(z|ϑ,W ), over layered absorptive media, may be constructed given a
single shot-record or receiver record of reflected primary data and the acoustic reference wavespeed
c0, which is assumed to agree with the actual medium at and above the sources and receivers.
Since two or more plane wave incidence angles are required to separately construct the profiles,
but many varied sets of these angles may do so, we define the quantity ϑ = {θ1, θ2, ...} to represent
the particular set of angles used. In addition, since the freedom also exists to weight the data at
each angle, we define W to represent the particular weighting scheme (if any) chosen. The profiles
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are then functions of these quantities also. Summarizing, we establish a mapping between D(ks, ω)
and α1(z|ϑ,W ), β1(z|ϑ,W ). The mapping is simple, generally a linear combination of Fourier
components of the data.

Second order

The second order term in equation (32) is close to a form suitable for the direct non-linear inverse
equations. Since the relationships in equations (31)–(33) hold for all ks and ω, by comparing
integrands in equation (32), we see that instances of α2 − 2Fβ2 occurring under Fourier integrals
may be replaced by

α2(z)− 2F (ω)β2(z)

=− [−i2qs]
2 cos2 θ

[α1(z)− 2F (ω)β1(z)]
(∫ z

0
dz′[α1(z′)− 2F (ω)β1(z′)]

)
.

(34)

This will be useful for manipulations at third order. We further change variables to θ and kz = −2qs:∫
dz′e−ikzz′ [α2(z′|ϑ,W )− 2F (kz, θ)β2(z′|ϑ,W )]

=
−ikz

2 cos2 θ

∫
dz′e−ikzz′ [α1(z′|ϑ,W )− 2F (kz, θ)β1(z′|ϑ,W )]

×

(∫ z′

0
dz′′[α1(z′′|ϑ,W )− 2F (kz, θ)β1(z′′|ϑ,W )]

)
,

(35)

where we have employed the specific forms for α1 and β1 derived above, including the set of angles
ϑ and weights W . Since the first order input to the second order term has these dependences, so
also must the second order perturbations α2 = α2(z|ϑ,W ), β2 = β2(z|ϑ,W ).

Third order

The third order problem requires a greater level of manipulation. The middle two terms in equation
(33) may be written alternatively as the sum of

[−i2qs]2

32 cos4 θ)

∫
dz′ei2qsz′ [α1(z′)− 2F (ω)β1(z′)]

(∫ z′

0
dz′′[α1(z′′)− 2F (ω)β1(z′′)]

)2

(36)

and

[−i2qs]2

16 cos4 θ

∫
dz′ei2qsz′ [α1(z′)− 2F (ω)β1(z′)]

(∫ z′

0
dz′′[α1(z′′)− 2F (ω)β1(z′′)]

)2

. (37)

The second of these re-written forms is immediate; to derive the first, we have used the fact that
for any integrable function f ,∫ z

−∞
f(z′)

∫ z′

−∞
f(z′′)dz′′dz′ =

1
2

(∫ z

−∞
f(z′)dz′

)2

. (38)
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The two terms in equation (33) are, then, of the same form, and sum to produce

3[−i2qs]2

32 cos6 θ

∫
dz′ei2qsz′ [α1(z′)− 2F (ω)β1(z′)]

(∫ z′

0
dz′′[α1(z′′)− 2F (ω)β1(z′′)]

)2

.

This quantity is, in turn, of the same form as that of the last term in equation (33), and so the
third order inverse equation may be re-expressed in full as

1
4 cos2 θ(ks, ω)

∫
dz′ei2qs(ks,ω)z′ [α3(z′)− 2F (ω)β3(z′)]

=
[−i2qs(ks, ω)]2

16 cos6 θ(ks, ω)

∫
dz′ei2qs(ks,ω)z′ [α1(z′)− 2F (ω)β1(z′)]

×

(∫ z′

0
dz′′[α1(z′′)− 2F (ω)β1(z′′)]

)2

.

(39)

Simplifying, and changing variables to kz and θ, we have∫
dz′e−ikzz′ [α3(z′|ϑ,W )− 2F (kz, θ)β3(z′|ϑ,W )]

=
[−ikz]2

4 cos4 θ

∫
dz′e−ikzz′ [α1(z′|ϑ,W )− 2F (kz, θ)β1(z′|ϑ,W )]

×

(∫ z′

0
dz′′[α1(z′′|ϑ,W )− 2F (kz, θ)β1(z′′|ϑ,W )]

)2

.

(40)

Again, since at first and second orders the outputs are functions of the set of angles and weights
used in the first order procedure, so must the third order terms, i.e., α3 = α3(z′|ϑ,W ) and β3 =
β3(z′|ϑ,W ).

Direct non-linear absorptive inversion equations

A pattern is discernible in equations (35) and (40), whose form, like in the forward case, persists
at higher order. In fact, αn+1 and βn+1 are related to α1 and β1 via∫

dz′e−ikzz′ [αn+1(z′|ϑ,W )− 2F (kz, θ)βn+1(z′|ϑ,W )]

=
1
n!

(
−ikz

2 cos2 θ

)n

×
∫
dz′e−ikzz′ [α1(z′|ϑ,W )− 2F (kz, θ)β1(z′|ϑ,W )]

×

(∫ z′

0
dz′′[α1(z′′|ϑ,W )− 2F (kz, θ)β1(z′′|ϑ,W )]

)n

.

(41)
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Defining

αP (z|ϑ,W ) ≡
∞∑

n=0

αn+1(z′|ϑ,W ),

βP (z|ϑ,W ) ≡
∞∑

n=0

βn+1(z′|ϑ,W ),

(42)

creating an instance of equation (41) for every value of n ≥ 0, and adding them together, the
left-hand side becomes

∞∑
n=0

∫
dz′e−ikzz′ [αn+1(z′|ϑ,W )− 2F (kz, θ)βn+1(z′|ϑ,W )]

=
∫
dz′e−ikzz′ [αP (z′|ϑ,W )− 2F (kz, θ)βP (z′|ϑ,W )],

(43)

and the right-hand side becomes

∞∑
n=0

1
n!

(
−ikz

2 cos2 θ

)n

×
∫
dz′e−ikzz′ [α1(z′|ϑ,W )− 2F (kz, θ)β1(z′|ϑ,W )]

×

(∫ z′

0
dz′′[α1(z′′|ϑ,W )− 2F (kz, θ)β1(z′′|ϑ,W )]

)n

=
∫
dz′e−ikzz′ [α1(z′|ϑ,W )− 2F (kz, θ)β1(z′|ϑ,W )]×

∞∑
n=0

1
n!

(
−ikz

2 cos2 θ

∫ z′

0
dz′′[α1(z′′|ϑ,W )− 2F (kz, θ)β1(z′′|ϑ,W )]

)n

=
∫
dz′e

−ikz

h
z′+ 1

2 cos2 θ

R z′
0 dz′′[α1(z′′|ϑ,W )−2F (kz ,θ)β1(z′′|ϑ,W )]

i

× [α1(z′|ϑ,W )− 2F (kz, θ)β1(z′|ϑ,W )],

(44)

where in the last step we have performed the same collapsing step (devised by Shaw et al. (2004))
that occurred in the forward problem. Equating these two expressions:∫

dz′e−ikzz′ [αP (z′|ϑ,W )− 2F (kz, θ)βP (z′|ϑ,W )]

=
∫
dz′e

−ikz

h
z′+ 1

2 cos2 θ

R z′
0 dz′′[α1(z′′|ϑ,W )−2F (kz ,θ)β1(z′′|ϑ,W )]

i

× [α1(z′|ϑ,W )− 2F (kz, θ)β1(z′|ϑ,W )],

(45)

we form the basic equations of direct non-linear inversion for absorptive-dispersive primaries.
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Appendix C: Absorptive model construction via non-linear direct inversion

The aim of inverse scattering procedures varies from the construction of spatial distributions of
perturbation quantities to the construction of processed data sets. The direct non-linear primary
inversion quantities derived in Appendix B lend themselves to either goal. In this appendix we will
address the former of these aims for layered, 2-parameter absorptive-dispersive media.

We begin with a straightforward manipulation of equation (45). Recognizing the left-hand side as
a Fourier transform, we have

αP (kz|ϑ,W )− 2F (kz, θ)βP (kz|ϑ,W ) = ∆(kz, θ|ϑ,W ), (46)

where we define

∆(kz, θ|ϑ,W ) ≡∫
dz′e

−ikz

h
z′+ 1

2 cos2 θ

R z′
0 dz′′[α1(z′′|ϑ,W )−2F (kz ,θ)β1(z′′|ϑ,W )]

i

× [α1(z′|ϑ,W )− 2F (kz, θ)β1(z′|ϑ,W )].

(47)

We wish to separately calculate αP and βP at each relevant depth wavenumber kz; given at least
two angles per depth wavenumber kz, and, if desired, an additional weighting scheme, this is an
over-determined problem. Some notational care will be required, because, as we see in equations
(46)-(47), an earlier set of angles and weights, ϑ = {θ1, θ2, ...} and W , is already in play.

We proceed by defining a new set of angles ϑ̃ = {θ̃1, θ̃2, ...} 6= ϑ and weights W̃ 6= W . There is
no formal requirement that ϑ̃ and W̃ be related in any way to ϑ and W . During the numerical
application of the direct Q compensation algorithms in this paper we have argued towards a rela-
tionship for that specific situation, but in general they are distinct and un-related. Consequently,
the results in this appendix are considered a function of both.

Given the N > 2 angles ϑ̃, the N resulting instances of equation (46) may be written in matrix
form:

F(kz, ϑ̃)
[
αP (kz|ϑ,W )
βP (kz|ϑ,W )

]
= ∆(kz, ϑ̃|ϑ,W ), (48)

where

F(kz, ϑ̃) =


1 −2F (kz, θ̃1)
1 −2F (kz, θ̃2)
...

...
1 −2F (kz, θ̃N )

 , (49)

and

∆(kz, ϑ̃|ϑ,W ) =


∆(kz, θ̃1|ϑ,W )
∆(kz, θ̃2|ϑ,W )

...
∆(kz, θ̃N |ϑ,W )

 . (50)
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A new weighting scheme W̃ may be brought in via whatever choices are made in inverting F(kz, ϑ̃).
That is, F−1 = F−1(kz, ϑ̃, W̃ ). Now, this means that the outputs αP and βP are dependent on kz,
but also on (1) the weights and angles used to create the linear output, ϑ and W , and on (2) the
weights and angles used above to create the non-linear output, ϑ̃ and W̃ . That is,[

αP (kz|ϑ̃, W̃ , ϑ,W )
βP (kz|ϑ̃, W̃ , ϑ,W )

]
= F−1(kz, ϑ̃, W̃ )∆(kz, ϑ̃|ϑ,W ). (51)

Finally, profiles may be generated through inverse Fourier transforms:

αP (z|ϑ̃, W̃ , ϑ,W ) =
1
2π

∫
dkze

ikzzαP (kz|ϑ̃, W̃ , ϑ,W ),

βP (z|ϑ̃, W̃ , ϑ,W ) =
1
2π

∫
dkze

ikzzβP (kz|ϑ̃, W̃ , ϑ,W ).
(52)

The freedom to twice choose both the subsets of the data we use, and their weights, during the
calculation of the profiles in equation (52), suggests a large range of types of inverse result is
possible.
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An analytic example of direct non-linear Q compensation

J. E. Lira and K. A. Innanen, M-OSRP, University of Houston

Abstract

Q compensation signifies processing of a seismic data set such that its events are corrected
for the decaying and broadening influence of absorptive wave propagation. Qualitatively, the
process “sharpens” these events, and enhances resolution. The inverse scattering series has
been investigated for its potential to permit Q-compensation to occur directly and nonlinearly
in terms of data, absent of an accurate input Q model. Several candidate procedures have been
suggested, all acting more or less consistently on the data. In this paper we create an analytic
data set, input it into one of these prototype algorithms, and analyze the resulting mathematics.
We clarify the influence of the integral over shallow data events on the “sharpening” of deeper
events. This represents the first analytic study of inverse scattering-based Q-compensation.

1 Introduction

In this second of two papers on the subject in the current M-OSRP volume, we provide an analytic
example of direct non-linear Q compensation. In previous research, linear and non-linear inverse
scattering have been analyzed (Innanen and Weglein, 2003a,b, 2005, 2007; Innanen and Lira, 2008)
with an aim to extract and separately pose algorithms for Q compensation of reflected seismic
primaries. Several distinct proto-type algorithms have been produced and considered with respect
to their basic behavior and their potential for practical use. One important early example, derived
in close analogy to the direct non-linear imaging research that was progressing at that time (Weglein
et al., 2001; Shaw et al., 2004), is particularly well-suited to analysis, although it involves the use
of a drastically oversimplified Earth model. Numerical testing of this version of direct non-linear
Q compensation (Innanen and Weglein, 2005) was sufficiently encouraging to lead to continued
development of the theory to more complex cases; however, much of that algorithm’s potential for
analytical investigation has so far remained un-exploited.

We investigate this prototype algorithm using analytic data. Because the analysis takes place in
time, frequency, wavenumber, and pseudo-depth domains, we use a simple, non-dispersive model
of attenuation which has simple, analytic forms in each of these domains. Other methods deriving
from non-linear inverse scattering have been understandable in terms of the multiplicative action
of data sets on themselves: e.g., free-surface multiples are predicted via the combination of primary
sub-events when the data traces are convolved with themselves. The potential value of the current
study is to begin to provide the inverse scattering Q compensation machinery a similar description.
In short, to provide intuitive as well as formal explanations for how a data-driven Q compensation
algorithm behaves.
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1.1 Inverse scattering series and absorption

Inverse scattering admits a wide range of linear/convolutional wave propagation models, including
many anelastic types (Weglein et al., 2003), which include linear viscoelastic and other anelastic
models. The literature contains a limited set of studies on linearized inversion of attenuated seismic
data, generally constrained, for instance with an assumed velocity model, for Q profiles (Carrion
and VerWest, 1987). These studies, while not precisely useful for our non-linear purposes, have
however generated the important result that an anelastic medium with unknown variation in both
space and frequency cannot be determined.

1.2 Direct linear inversion

The linear component of the inverse scattering series relates the measured data to the first-order
estimate of the perturbation. If the perturbation is small, this component may form the basis for
the linear Born inverse approximation; however, if it is large and extended, this construction may
be viewed as essentially a linear transformation and weighting of the data, in preparation for use
as input to the higher order terms.

To derive direct non-linear Q compensation operators from high order parts of the inverse scattering
series requires a well-posed linear inverse procedure designed to accommodate perturbations in
absorptive parameters (e.g., Q) as well as any other relevant elastic/acoustic parameters (e.g.,
wavespeed, or bulk modulus). A 2-parameter multidimensional procedure of this kind for use with
pre-stack reflection seismic data has been described by Innanen and Weglein (2007). We will make
use of essentially that theory, reduced to the case of variations in a single parameter (Q) and data
from a normally-incident wave.

1.3 A prototype direct non-linear Q compensation procedure

Weglein et al. (2001) proposed using the inverse scattering series to process primaries in a task-
separated way, in particular to accomplish imaging of reflectors. Shaw et al. (2004) and Shaw
(2005) presented a closed-form for a task specific sub-series for imaging primaries, the leading order
imaging series, which for moderate perturbations locates the medium’s reflectors at depth and
without a priori information about the medium. On the assumption that the wave attenuation
is corrected-for by similar inverse scattering terms to those which correct for the phase issues in
imaging, Innanen and Weglein (2005) presented an analogous prototype algorithm, a leading order
Q compensation subseries, a task specific sub-series for correcting the effect of absorption in the
seismic data. The formula is:

DC(z) =
∫ ∞

−∞
eikz[z− 1

2

R z
0 β1(z′)dz′]D(kz)dkz, (1)

where β1 is a weighted integral of the data:

β1(z) = 4
∫ z

0
D(z′)dz′, (2)
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D (the input data) and DC (the output, Q compensated data) are expressed in the pseudo-depth
domain1, and kz = 2ω

c0
is a wavenumber conjugate to pseudo-depth. Innanen and Weglein (2005)

presented encouraging numerical tests with the algorithm in equation (1), showing a significant
level of Q-compensation in their results. Equation (1) does not form the basis for the current
multi-parameter form of direct non-linear Q compensation (Innanen and Lira, 2008), i.e., the latter
does not reduce to equation (1). However, the two approaches are qualitatively similar, and the
insight we gain from studying this carries over to all current candidate algorithms.

2 Direct non-linear Q compensation: the algorithm

In equation (1), it is true that:

• β1 and data are the only input, and the latter is computed directly from smoothed and
attenuated data;

• Since, by construction β1 is complex, equation (1) amounts to the application of an operator
that contains the cumulative effect of Q down to a given z, magnifying the large wavenumber
components of the data D(kz).

In this paper, we analyze the same equation, but instead of computing it numerically we define
an analytic expression for the input data in an absorptive medium. The analytic data are used as
input for the computation of DC , which is the Q-compensated data.

3 Analytic data

In this section we provide an analytic data set, using a simple expression for a non-dispersive pulse
propagating in an absorptive medium discussed by Aki and Richards (2002):

p(x, t) =
1
π

 x
2cQ(

x
2cQ

)2
+
(

x
c − t

)2
 . (3)

The pulse shape of equation (3) for an arrival time of 1.37 s is illustrated in Figure 1.

1A scaled version of time based on the homogeneous reference wavespeed c0.
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Figure 1: An illustration showing a pulse based on the model of a pulse propagating in an absorptive
medium (Aki and Richards, 2002)

Aki and Richards (2002) point out that this wave is non-causal and it is symmetric, neither of
which agrees with physics or experiment. However, it is analytically expressible in time, frequency
and wavenumber domains, a requirement for this study.

3.1 A qualitative view of the sharpness of the pulse

The goal in this paper is to observe in the mathematics the sharpening of attenuated events. We
begin therefore with a discussion of what “more” vs. “less” attenuated means in the context of
events whose amplitudes and arrival times are described by equation (3). An observation: the lower
the value of Q, the greater must be the attenuation. In equation (3) this effect is produced by the
numerator and the first term in the denominator. The second term in the denominator fixes the
arrival time. Notice that if a further quantity ∆ was formally introduced to p:

p(x, t) =
1
π

 x
2cQ −∆(

x
2cQ −∆

)2
+
(

x
c − t

)2
 , (4)

it would tend to act to alter the width, or sharpness, of the pulse. We see from Figures 1 and 2 that
by changing ∆ in the term

[
x

2cQ −∆
]
, we change the shape of the pulse, sharpening or broadening

it as we increase or decrease ∆ respectively. We will return to this qualitative observation in the
following to interpret the non-linear operation of inverse scattering Q compensation machinery.
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Figure 2: An illustration showing the same pulse of Figure 1 for the three different values of the term(
x

2cQ −∆
)

in equation (4). The values are: 0.1 for the outermost curve, 0.05 for the intermediate
curve and 0.001 for the innermost curve.

3.2 Modeling two primaries reflecting at normal incidence from an absorptive
layer

We next use the above results to forward model two primaries reflecting from the layer illustrated
in Figure 3. To keep the data aligned with the assumptions within equation (1), the reflections are
due to contrasts in Q only.
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Figure 3: The constant velocity absorptive 1-D model assumed for the generation of the analytical data,
where the only parameter permitted to change was the absorption parameter Q and with a
non-absorptive layer 1. The synthetic data-set is comprised by the two primaries P1 and P2.

The parameter Q for layer 1 is chosen to be essentially infinity, hence no absorption takes place
in that layer, i.e., we assume an acoustic reference medium. The data with two primaries may be
expressed analytically as:

P (t) = P1(t) + P2(t), (5)

where

P1(t) =
R1

π
δ(t− t1) (6)

P2(t) =
T12R2T21

π

(
z2−z1
cQ2

)
(

z2−z1
cQ2

)2
+ (t2 − t)2

, (7)

where t1 = 2z1
c , t2 = t1 + 2(z2−z1)

c , R1 = k1−k2
k1+k2

, R2 = k2−k3
k2+k3

, T12 = 2k1
k1+k2

, T21 = 2k2
k1+k2

and

ki = ω
c

(
1 + i

2Qi

)
.

4 Analytic example of direct non-linear Q-compensation

In order to use the attenuated data set in equation (5) as input into the processing formula in
equation (1), it first needs to be linearly manipulated to correspond with the two appearances of
data on the right-hand side of equation (1). To generate D(kz), we Fourier transform equation (5)
and change variables from ω to kz:

D(kz) = P1(kz) + P2(kz)

=
R1

2π
e−ikzz1e

− z1
2Q1

kz +
T12R2T21

2π
e−ikzz2e

−kz

“
z1

2Q1
+

(z2−z1)
2Q2

”
. (8)
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Next we use equations (5) and (2) to determine β1(z):

β1(z) = 4
∫ z

0
[P1(z′) + P2(z′)]dz′ =

= 4
∫ z

0

 R1

2π2

(
z1

2Q1

)
(

z1
2Q1

)2
+ (z′ − z1)2

+
T12R2T21

2π2

(
z1

2Q1
+ (z2−z1)

2Q2

)
(

z1
2Q1

+ (z2−z1)
2Q2

)2
+ (z′ − z2)2

 dz′. (9)

For details of this mathematics see Appendix A.

The deeper of the two primaries, P2(t), is the event that will be corrected in this example (since
no reflected wave arrives before P1(t), the non-linear operator will, correctly, have no influence on
P1). To simplify the analysis, we therefore retain only P2(kz) as data to be operated on. Equation
(1) is used in the form:

P2C(z) =
∫ ∞

−∞
eikz[z− 1

2

R z
0 β1(z′)dz′]P2(kz)dkz. (10)

Evaluating equation (10) results in:

P2C (z) = 2
T12R2T21

π

(
(z2−z1)

2Q2
− Γq(z)

)
(

(z2−z1)
2Q2

− Γq(z)
)2

+ (z − z2)2
, (11)

where

Γq(z) = 2
(
T12R2T21

π2

)((z2 − z1)
2Q2

)arctan

 z − z2
(z2−z1)

2Q2

 z − z2
(z2−z1)

2Q2



+ ln

 (z2−z1)
2Q2√(

(z2−z1)
2Q2

)2
+ (z − z2)

2

− arctan

 −z2
(z2−z1)

2Q2

 −z2
(z2−z1)

2Q2



− ln

 (z2−z1)
2Q2√(

(z2−z1)
2Q2

)2
+ (−z2)2


− arctan

 −z2
(z2−z1)

2Q2

 z

 . (12)

The full mathematics of this derivation is in Appendix A.

The interest is to compare the attenuated event before compensation and after compensation. We
re-write equations (7) and (11) together to make the comparison easier. Before compensation, the
attenuated event in the pseudo-depth domain has the form

P2(z) =
T12R2T21

π

(
(z2−z1)

2Q2

)
(

(z2−z1)
2Q2

)2
+ (z − z2)2

, (13)
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and after compensation, it has the form

P2C (z) = 2
T12R2T21

π

(
(z2−z1)

2Q2
− Γq(z)

)
(

(z2−z1)
2Q2

− Γq(z)
)2

+ (z − z2)2
. (14)

They are equal, except for the term Γq(z) in equation (13). Notice that this term, which is a
function only of the input data and reference velocity, plays a role similar to that of ∆ in equation
(4).

Evidently the mathematical activity of direct non-linear Q compensation involves a conferring, on
a given primary, of accumulated amplitudes from shallower primaries precisely into the parts of the
data phase and amplitude in which the breadth of the pulse is determined.

5 Plots of the analytic results

In this section we present synthetic examples showing three cases representing media with the Q
profile representing low attenuation, large Q, to high attenuation, small Q. Table 1 contains the
parameter values of each data set:

Depth (m) c (m/s) 1 2 3 Qi

000-1500 2200 ∞ ∞ ∞ Q1

1500-2500 2200 200 150 100 Q2

2500-∞ 2200 50 50 50 Q3

Table 1. Absorptive Earth models.

Since the absorptive effects are present only in P2, as in the analytic results we plot only this
primary. Figure 4 illustrates P2 for each model.
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Figure 4: The attenuated primary P2 for each Q-profiles in table 1. (A) The low attenuation Q-profile, (B)
the intermediate attenuation Q-profile, and (C) the high attenuation Q-profile.

We next plot the correction of these P2 events, i.e, the left-hand side of equation (13). We plot
in Figure 6, the actual primaries for each one of the Q-profiles of Table 1, and the corresponding
corrected one, normalizing both at their maximum amplitudes.
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Figure 5: An illustration showing the corrected primary P2C(z) in equation (13) generated by the solution
of the leading order Q-compensation sub-series represented by equation (1) for all the three Q-
profiles listed in table 1. (A) The low attenuation Q-profile, (B) the intermediate attenuation
Q-profile, and (C) the high attenuation Q-profile.
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Figure 6: An illustration showing the original primary P2 (solid line) and the corrected primary P2C (bold
solid line) for all the three Q-profiles listed in table 1. (A) The low attenuation Q-profile, (B)
the intermediate attenuation Q-profile, and (C) the high attenuation Q-profile.
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Appendix A. The mathematics of the analytic Q compensation example

In this section we derive the mathematical forms for β1(z) seen in equation (9) and Γq(z) seen
in equation (12). First we calculate β1(z) in the pseudo-depth domain. We start by Fourier
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transforming the shallower primary in equation (6). We have

P1(ω) =
∫ ∞

−∞

R1

π

(
z1

c1Q1

)
e−iωtdt(

z1
c1Q1

)2
+
(

2z1
c1
− t
)2 , (15)

hence, letting τ = 2z1
c1Q1

− t and dτ = −dt,

P1(ω) =
−R1

π

∫ −∞

∞

(
z1

c1Q1

)
e
−iω

“
2z1
c1
−τ

”
dτ(

z1
c1Q1

)2
+ τ2

=
R1

π
e−iω

2z1
c1

∫ ∞

−∞

(
z1

c1Q

)
e−iωτdτ(

z1
c1Q

)2
+ τ2

, (16)

which can be immediately evaluated:

P1(ω) =
R1

2π
e
−iω

2z1
c1 e

− z1
c1Q1

|ω|
. (17)

Then we similarly transform the deeper primary in equation (7):

P2(ω) =
T12R2T21

π

∫ ∞

−∞

(
z1

c1Q1
+ z2−z1

c1Q2

)
e−iωtdt(

z1
c1Q1

+ z2−z1
c1Q2

)2
+
(

2z1
c1

+ 2(z2−z1)
c1

− t
)2

=
T12R2T21

2π

[
e
−iω

“
2z2
c1

”
e
−

“
z1

c1Q1
+

(z2−z1)
c1Q2

”]
. (18)

We next change variables from ω to kz = 2ω/c0:

P1(kz) =
R1

2π
e−ikzz1e

− z1
2Q1

kz (19)

P2(kz) =
T12R2T21

2π
e−ikzz2e

−kz

“
z1

2Q1
+

(z2−z1)
2Q2

”
. (20)

Finally, we inverse Fourier transform over kz to the pseudo-depth domain. For the first primary
we obtain

P1(z) =
1
2π

∫ ∞

−∞

(
R1

2π

)
e−ikzz1e

−kz
z1

2Q1 eikzdkz (21)

=
R1

2π

[
1
2π

∫ ∞

−∞
e
−kz

z1
2Q1 eikz(z−z1)dkz

]
, (22)

or, evaluating the integral,

P1(z) =
R1

2π2

(
z1

2Q1

)
(

z1
2Q1

)2
+ (z − z1)2

. (23)
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Following the same procedure for P2(z) we have:

P2(z) =
T12R2T21

2π2

(
z1

2Q1
+ (z2−z1)

2Q2

)
(

z1
2Q1

+ (z2−z1)
2Q2

)2
+ (z − z2)2

. (24)

To calculate β1(z) we need to weight and integrate the data in z domain, [P1(z) + P2(z)] as in
equation (2):

β1(z) = 4
∫ z

0
[P1(z′) + P2(z′)]dz′

= 4
∫ z

0


R1

2π2

(
z1

2Q1

)
(

z1
2Q1

)2
+ (z′ − z1)2︸ ︷︷ ︸

A

+
T12R2T21

2π2

(
z1

2Q1
+ (z2−z1)

2Q2

)
(

z1
2Q1

+ (z2−z1)
2Q2

)2
+ (z′ − z2)2︸ ︷︷ ︸

B

 dz′.

Integrating A and B separately, we have:

A =
∫ z

0

 R1

2π2

(
z1

2Q1

)
(

z1
2Q1

)2
+ (z′ − z1)2

 dz′ (25)

=
R1

2π2

(
arctan

(
z − z1
z1/2Q1

)
− arctan(−2Q1)

)
, (26)

and

B =
∫ z

0

(
T12R2T21

2π2

) z1
2Q1

+ (z2−z1)
2Q2(

(z2−z1)
2Q2

)2
+ (z′ − z2)

2
(27)

=
(
T12R2T21

2π2

)arctan

 (z − z2)
z1

2Q1
+ (z2−z1)

2Q2

− arctan

 −z2
z1

2Q1
+ (z2−z1)

2c2Q2

 ,

hence

β1(z) = 4
([

R1

2π2

(
arctan

(
z − z1
z1/2Q1

)
− arctan(−2Q1)

)]
(28)

+
(
T12R2T21

2π2

)arctan

 (z − z2)
z1

2Q1
+ (z2−z1)

2Q2

− arctan

 −z2
z1

2Q1
+ (z2−z1)

2Q2

 .
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To enact the direct non-linear Q compensation in equation (1), we next must use this result to
calculate

∫ z
0 β1(z′)dz′:∫ z

0
β1(z′)dz′

=4

[(
R1

2π2

)((
z1

2Q1

)(
arctan

(
z − z1
z1/2Q1

)(
z − z1
z1/2Q1

)
+ ln

(
z1/2Q1√

(z − z1)2 + (z1/2Q1)2

)

− arctan(−2Q1)(−2Q1)− ln

(
z1/2Q1√

z2
1 + (z1/2Q1)2

))
− arctan(−2Q1)z

)

+
(
T12R2T21

2π2

)( z1
2Q1

+
(z2 − z1)

2Q2

)arctan

 z − z2
z1

2Q1
+ (z2−z1)

2Q2

 z − z2
z1

2Q1
+ (z2−z1)

2Q2



+ ln

 z1
2Q1

+ (z2−z1)
2Q2√(

z1
2Q1

+ (z2−z1)
2Q2

)2
+ (z − z2)

2

− arctan

 −z2
z1

2Q1
+ (z2−z1)

2Q2

−(z1 + (z2 − z1))
z1

2Q1
+ (z2−z1)

2Q2



− ln

 z1
2Q1

+ (z2−z1)
2Q2√(

z1
2Q1

+ (z2−z1)
2Q2

)2
+ (−z2))2


 − arctan

 −(z2)
z1

2Q1
+ (z2−z1)

2Q2

 (z)


 .

(29)

In calculating equation (1), the above result will be included in the argument of the exponential
function, and that exponential will operate on the data in the kz domain. Innanen and Weglein
(2005) presented the algorithm in a slightly different way, involving effectively the anti-derivative
of both sides of equation (1). This leads to the use of β1(kz) rather than D(kz) under the integral.
We will perform our calculation with this β1 form, and return to the data form afterwards with a
derivative operation. In our analytic example, the part of the integrand to be operated on becomes

β1(kz) = −4
D( c1

2 kz)
ikz

= −4
P1( c1

2 kz) + P2( c1
2 kz)

ikz

= − 4
ikz

[
R1

2π

(
e−iz1kze

− z1
2Q1

kz
)

+
T12R2T21

2π

(
e−ikzz2e

−
“

z1
2Q1

+
(z2−z1)

2Q2

”
kz

)]
. (30)

With equations (29) and (30) in hand, we may finally solve the Q compensation integral∫ ∞

−∞
eikz(z− 1

2

R z
0 β1(z′)dz′)β1(kz)dkz. (31)

To make this process tractable, we point out a critical issue with regards to reflection coefficients
from contrasts in Q only. Consider the reflection coefficient R1 due to the contrast between layers
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1 and 2 in Figure 3, in which we assume Q1 is essentially infinite. It is straightforward to show
that

R1 =
i(2Q2)−1

2 + i(2Q2)−1
=

i

4Q2
+

1
16Q2

2

+ ..., (32)

i.e., that to a high degree of accuracy R1 is an imaginary quantity. This means it is possible to
regard the right-hand side of equation (29) as i multiplied by a real function of pseudo-depth. To
hide the algebraic complexity of the equation, we call this real function Γq(z), and replace equation
(29) with ∫ z

0
β1(z′)dz′ = i4Γq(z), (33)

which will simplify the result.

Our final simplification comes from recognizing that the integral of β1 down to the first event, P1,
will be zero. This is an expected result: since no attenuation occurs to waves propagating in the
non-absorptive reference medium, there is no Q compensation to be carried out on P1. For this
reason, we turn our focus entirely to the effect of direct non-linear Q compensation on P2, leaving
P1 out of the analysis. The analytic direct non-linear Q compensation calculation becomes∫ ∞

−∞
eikz(z− 1

2

R z
0 β1(z′)dz′)β1(kz)dkz

= − 4
ikz

∫ ∞

−∞
eikz(z−iΓq(z))

[
. . .+

T12R2T21

2π

(
e−ikzz2e

−
“

z1
2Q1

+
(z2−z1)

2Q2

”
kz

)]
dkz.

(34)

Carrying out the integration, we have

− 2
ikzπ

∫ ∞

−∞
eikzzeΓq(z)kz

[
· · ·+ T12R2T21

(
e−ikzz2e

−
“

z1
2Q1

+
(z2−z1)

2Q2

”
kz

)]
dkz

=− 2
ikz

T12R2T21

π

∫ ∞

−∞
. . .

(
e−i(z−z2)kze

h
Γq(z)−

“
z1

2Q1
+

(z2−z1)
2Q2

”i
kz

)]
dkz

=− 2
ikz

T12R2T21

π

(
Γq(z)z − z1

2Q1
+ (z2−z1)

2Q2

)
(
Γq(z)− z1

2Q1
+ (z2−z1)

2Q2

)2
+ (z − z2)2

=
2
ikz

T12R2T21

π

(
z1

2Q1
+ (z2−z1)

2Q2
− Γq(z)

)
(

z1
2Q1

+ (z2−z1)
2Q2

− Γq(z)
)2

+ (z − z2)2
,

(35)

which, after the derivative with respect to z is taken (i.e., multiplication by ikz), produces the
desired result.

217



Clarifying the underlying and fundamental meaning of the
approximate linear inversion of seismic data

A. B. Weglein1, J. Zhang2, H. Zhang3, A. C. Ramirez4 and F. Liu1

1 University of Houston, 617 Science and Research Bldg. 1, Houston, TX 77204-5005
2 Currently BP America, 501 Westlake Park Blvd., Houston, TX 77079
3 Currently ConocoPhillips, 600 N. Dairy Ashford, Houston, TX 77079
4 Currently WesternGeco, 10001 Richmond Ave. Houston, Tx, 77042

Abstract

The inverse scattering series (ISS) is the only fully non-linear and direct multi-dimensional
seismic inversion methodology. The directness and fully non-linear character of the ISS method
together provide a set of unique benefits and advantages, with tremendous conceptual and
practical value and consequence. In previous publications the capability of the inverse scattering
series to achieve all processing goals, e.g., multiple removal, depth imaging, Q compensation and
non-linear AVO, and without needing or determining traditional subsurface information, and
directly in terms of only data, were described and exemplified. In this paper, another unique
benefit of the ISS is presented: The very meaning of a linear approximate estimate is for the
first time defined as the linear estimate to the actual sought after physical property. The direct
non-linear solution for changes in earth mechanical properties at a target provided by the ISS
unquestionably and unambiguously requires all multi-components of data, and not only PP data.
Hence, the data required for direct non-linear inversion of property changes defines the data set
that is required in defining a linear estimate of property changes. The linear estimate of a change
in physical properties, to be considered a linear inverse estimate needs to be linear in a data that
can actually determine the physical property. The ISS is the only direct non-linear inversion
method, and in its prescriptive and explicit directness-it has unambiguously communicated both
the data requirement and algorithms for direct non-linear and linear inversion.

1 Background and Introduction

Among the unique qualities of the inverse scattering series, (e.g., Weglein et al., 2003, Weglein
et al., 1997) are: (1) a capability to achieve all processing objectives, (e.g., (i) free surface multiple
removal, (ii) internal multiple removal, (iii) depth imaging, (iv) Q compensation, and (v) direct
non-linear target identification), all achievable directly in terms of measured data, without a need,
in principle or practice, to know or to determine, or to even roughly estimate any information,
whatsoever, (e.g., no velocity and no density information, nor information concerning Q) related to
subsurface properties that govern the propagation of waves in the actual subsurface, and absolutely
required by conventional linear migration and migration-inversion to locate and identify targets;
(2) distinct direct algorithms input the data and output each of the processing objectives listed
in item (1, (i)-(v)) through the introduction of isolated task subseries; (3) among the tasks listed
above ((i)-(iii))are each achievable by a distinct earth model-type independent algorithm, whether
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the earth is acoustic, elastic, etc; (4) the inverse step is always the same, and is only in terms of
water speed Green’s functions and is provided by a single water speed FK Stolt migration, without
the need for a generalized inverse, model matching or background updating schemes, and their well
documented issues and pitfalls of low-frequency data demands and often inadequate earth model
types.

In this paper, we present a new and here-to-fore unrecognized and unheralded benefit of the fully
non-linear and direct multi-dimensional inversion represented by the inverse scattering series. That
new contribution is at the central core of all inversion theory and impacts both how we better
understand previously observed and reported results from other groups and researchers, as well
as providing a firm and unambiguous platform and guide to researchers and explorationists. It
allows us to understand, for the very first time, the data collection mandated and required for a
meaningful and consistent linear approximate inverse solution, and, in addition, a direct prescription
and determination of the linear estimate and a more realistic and reliable non-linear inverse target
identification.

The direct non-linear solution only provided by the ISS provides the first unambiguous and con-
sistent meaning for a direct approximate linear inverse solution. Inverting PP data linearly for
approximate changes in earth mechanical properties, is providing a linear approximate solution,
to the PP data equation, but not a linear approximate inverse solution for changes in earth me-
chanical properties. To achieve the higher bar of a linear approximate inverse solution requires a
non-approximate inverse solution, as a starting point, as either a closed form or expressed as a series
that is going to be reduced and simplified in a linear approximate form. The inverse scattering se-
ries represents a non-approximate fully non-linear and direct inverse solution. The direct inversion
of earth mechanical properties requires PP, PS, SP and SS data in a 2D world, and PP, PSv, PSh,
SvSv, ShSh, ShP, SvP, SvSh, ShSv, in a 3D earth. Hence, the linear approximate inverse solution,
must be linear in the data that allows the linear solution to correspond to the linear approximation
of the inverse solution. PP data alone can produce a linear approximate solution, but PP, PS, SP
and SS can provide a linear approximate inverse solution.

The conclusion is that only multi-component data can produce a linear approximate, that is a linear
approximation inversion solution, as a first step towards a complete non-linear and direct solution.

We recognize that the changes in material properties across a single reflector and the corresponding
reflection coefficients and reflection data have a non-linear relationship in both a modeling, and,
therefore, in an inversion sense. However, the key and salient point is that while changes in earth
mechanical properties at an interface can through the Zoeppritz relations directly, non-linearly and
exactly and separately determine each of the PP, PS, SS reflection coefficients, it requires all of those
reflection coefficients taken together to determine any one, or more, of those changes in mechanical
properties. That message is neither obvious, or reasonable or even plausible. However, the message
here is that it is all of those difficult and unattractive things, and yet it is also unambiguously and
unmistakably true. In general, inversion or processing is not modeling run backwards.

Direct linear and indirect methods (e.g., full wavefield inversion) have not, and cannot, bring that
clarity to the meaning and unambiguous prescription of the linear approximate inverse solution.
Model matching with global searches of PP data alone has no framework or other reason to sus-
pect the fundamental inadequacy of that PP data to provide a linear inverse let alone non-linear
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inverse solution. We have published papers ourselves using PP data to estimate changes in physical
properties, and along with the entire petroleum industry have used PP data in AVO analysis. PP
data has enough degrees of freedom given enough angles to more than solve for linear estimates in
changes in earth material properties. So what is the problem?

We are all fully aware that a single angle of data will not be able to simultaneously invert for several
changes in earth mechanical properties. That is called count-conservation between the degrees of
freedom in your data and the sought after earth material properties, everywhere recognized and
understood in inverse theory. That is a necessary but not a sufficient condition for a linear inverse
solution, although necessary and sufficient for a linear solution. The fact that all components of
elastic data are absolutely base-line required to provide a meaningful linear inverse or non-linear
inverse solution- is a new and much more subtle but no less important message. The fact that the
inverse scattering series is the only direct and non-linear inversion method allowed it to stand alone
and to provide a framework for the very meaning of linear inverse and a systematic and precise
way to directly improve upon those estimates through higher terms in the expansion of those earth
mechanical properties directly in terms of the data. That required data is full multi-component
data and not only PP.

If you have an expansion for a change in a physical property, call it V , in terms of reflection data,
D, then schematically

V (D) = V (D = 0) + V ′(D = 0)D +
1
2
V ′′(D = 0)D2 + · · · .

Where V (D = 0) = 0, and V ′(0)D is the linear estimate to V (D) where D is the data needed to
determine V (D). Only the Inverse Scattering Series provides the precise series for V (D) and, hence,
in that process defines both the data necessary to find V (D) and its linear estimate V1 = V ′(0)D.
You cannot change the expansion variable in a Taylor series, if D determines the series, then each
term including the first linear term depends on D, all elements of D. D is multi-component data
for the determination of changes in elastic properties. That is the story.

The need for multi-component data is not adding a set of constraints beyond PP data, but providing
the base line necessary data needed to satisfy the fundamental non-linear relationship between
reflection data and changes in earth mechanical properties. It is a fundamental data need, that
stands with data dimensionality and degrees of freedom, that comes in at the ground floor, before
subtler and important issues of robustness and stability are examined, and not merely as a practical
enhancement or boost to PP data inversion potential and capability. The need for multi-component
data is fundamental. As with other things it can be ignored but will rarely be ignorable.

The latter PP data is fundamentally inadequate from a conceptual and math-physics analysis per-
spective for a consistent and meaningful target identification, and the needed data and the methods
for using that data are only provided by the directness and fully non-linear and prescriptive nature
of the inverse scattering series. Those unique properties and benefits of the ISS are not provided by
either: (1) linear approximate direct inverse methods, behind all current mainstream leading edge
migration and migration-inversion algorithms, or (2) non-linear indirect inverse methods such as
iterative linear or other indirect model matching inversion methods, or “full-wave field inversion”.
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In this paper, we take the reader through the thinking process and deliberation within our group
that brought this issue to light. It began in the simpler acoustic world, where the difference between
forward and inverse problem needed some attention and clarification. In this paper we will ask and
answer the following questions.

1. What does linear in the data mean?

2. Linear in what data?

3. Conservation of dimension (having enough degrees of freedom in your data to “solve” an
equation) is not a sufficient condition to define “what data” and being able to solve an
equation (in isolation) is not the same as finding a physically meaningful solution or even a
linear estimate;

4. Solving an equation without the context and framework within which that equation resides,
and ignoring the assumptions that lead to that equation is a dangerous path towards an
inverse illusion;

5. Implications for data collection and target identification.

We begin with a review of the inverse scattering series.

Scattering theory relates the perturbation (the difference between the reference and actual medium
properties) to the scattered wave field (the difference between the reference medium’s and the
actual medium’s wave field). It is therefore reasonable that in discussing scattering theory, we
begin with the basic wave equations governing the wave propagation in the actual and reference
medium, respectively,

LG = δ, (1)

L0G0 = δ, (2)

where L and L0 are respectively the differential operators that describe wave propagation in the
actual and reference medium, and G and G0 are the corresponding Green’s operators. The δ on
the right hand side of both equations is a Dirac delta operator and represents an impulsive source.

The perturbation is defined as V = L0 − L. The Lippmann-Schwinger equation,

G = G0 +G0V G, (3)

relates G,G0 and V (see, e.g., Taylor, 1972). Iterating this equation back into itself generates the
forward scattering series

G = G0 +G0V G0 +G0V G0V G0 + · · · . (4)

Then the scattered field ψs ≡ G−G0 can be written as

ψs = G0V G0 +G0V G0V G0 + · · ·
= (ψs)1 + (ψs)2 + · · · , (5)
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where (ψs)n is the portion of ψs that is nth order in V . The measured values of ψs are the data,
D, where

D = (ψs)ms = (ψs)on the measurement surface.

In the inverse scattering series, expanding V as a series in orders of D,

V = V1 + V2 + V3 + · · · , (6)

then substituting equation 6 into equation 5, and evaluating equation 5 on the measurement surface
yields

D = [G0(V1 + V2 + · · · )G0]ms + [G0(V1 + V2 + · · · )G0(V1 + V2 + · · · )G0]ms + · · · . (7)

Setting terms of equal order in the data equal, leads to the equations that determine V1, V2, . . .
directly from D and G0.

D = [G0V1G0]ms, (8)

0 = [G0V2G0]ms + [G0V1G0V1G0]ms, (9)

0 =[G0V3G0]ms + [G0V1G0V2G0]ms + [G0V2G0V1G0]ms

+ [G0V1G0V1G0V1G0]ms, (10)

etc. Equations 8 ∼ 10 permit the sequential calculation of V1, V2, . . ., and, hence, achieve full
inversion for V (see equation 6) from the recorded data D and the reference wave field (i.e., the
Green’s operator of the reference medium) G0. Therefore, the inverse scattering series is a multi-
D inversion procedure that directly determines physical properties using only reflection data and
reference medium information.

For the parochial purposes of this paper the absolutely critical point to recognize at this juncture is
that the equations for V1, V2, . . . are exact equations for V1, V2, . . ., where V1, V2, . . . are linear and
quadratic estimates for V , respectively ... but the equations for V1, V2 etc are the exact equations
for the latter quantities.

2 Acoustic case

In this section, we will consider a 1D acoustic two parameter earth model (e.g. bulk modulus and
density or velocity and density). We start with the 3D acoustic wave equations in the actual and
reference medium: [

ω2

K(r)
+∇ · 1

ρ(r)
∇
]
G(r, rs;ω) = δ(r− rs), (11)[

ω2

K0(r)
+∇ · 1

ρ0(r)
∇
]
G0(r, rs;ω) = δ(r− rs), (12)

where G(r, rs;ω) and G0(r, rs;ω) are respectively the free-space causal Green’s functions that
describe wave propagation in the actual and reference medium. K = c2ρ, is P-wave bulk modulus,
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c is P-wave velocity and ρ is the density. The quantities with subscript “0” are for the reference
medium, and those without the subscript are for the actual medium. The perturbation is

V = L0 − L =
ω2α

K0
+∇ · β

ρ0
∇, (13)

where α = 1− K0
K and β = 1− ρ0

ρ are the two parameters we choose to do the inversion. Assuming
both ρ0 and c0 are constants, equation 12 becomes(

ω2

c20
+∇2

)
G0(r, rs;ω) = ρ0δ(r− rs). (14)

For the 1-D case, the perturbation V has the following form

V (z,∇) =
ω2α(z)
K0

+
1
ρ0
β(z)

∂2

∂x2
+

1
ρ0

∂

∂z
β(z)

∂

∂z
. (15)

V (z,∇), α(z) and β(z) can be expanded respectively as

V (z,∇) = V1(z,∇) + V2(z,∇) + · · · , (16)

α(z) = α1(z) + α2(z) + · · · , (17)

β(z) = β1(z) + β2(z) + · · · . (18)

Then we have

V1(z,∇) =
ω2α1(z)
K0

+
1
ρ0
β1(z)

∂2

∂x2
+

1
ρ0

∂

∂z
β1(z)

∂

∂z
, (19)

V2(z,∇) =
ω2α2(z)
K0

+
1
ρ0
β2(z)

∂2

∂x2
+

1
ρ0

∂

∂z
β2(z)

∂

∂z
, (20)

....

Substituting equation 19 into equation 8, we can get the linear solution for α1 and β1 in the
frequency domain

D̃(qg, θ, zg, zs) = −ρ0

4
e−iqg(zs+zg)

[
1

cos2 θ
α̃1(−2qg) + (1− tan2 θ)β̃1(−2qg)

]
. (21)

Let zs = zg = 0,

D(z, θ) = −ρ0

4

( 1
cos2 θ

α1(z) + (1− tan2 θ)β1(z)
)

(22)

Let’s consider the following logic. Equation 22 is an exact equation for the linear estimates α1(z)
and β1(z), and choosing two (or more) values of θ will allow you to solve equation 22 for α1(z) and
β1(z).

For a single reflector model, the left hand side of equation 22 is the migration of the surface recorded
data. The migration provides a step-function at the depth of the reflector whose angle dependent
amplitude is the reflector’s angle dependent reflection coefficient.
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The right hand side of equation 22 can be rewritten as

−ρ0

4

(
α1(z) + β1(z) + (α1(z)− β1(z)) tan2 θ

)
. (23)

Separately, we know that the exact plane wave reflection coefficient is (e.g., Keys, 1989)

R(θ) =
(ρ1/ρ0)(c1/c0)

√
1− sin2 θ −

√
1− (c21/c

2
0) sin2 θ

(ρ1/ρ0)(c1/c0)
√

1− sin2 θ +
√

1− (c21/c
2
0) sin2 θ

. (24)

and we can find a Taylor series in R as a function of sin2 θ or another Taylor series using

sin2 θ =
tan2 θ

1 + tan2 θ
.

This series is

R(θ) =R(tan2 θ)

=R(tan2 θ = 0) +
(dR(tan2 θ)
d(tan2 θ)

)∣∣∣∣∣
tan2 θ=0

· tan2 θ

+
(dR(tan2 θ)
d(tan2 θ)

)∣∣∣∣∣
tan2 θ=0

· tan4 θ + · · ·

(25)

Equation 25 is exact and the amplitude of the step-function in equation 23 is

R(tan2 θ) = α1 + β1 + (α1 − β1) tan2 θ. (26)

The first term in the inverse scattering series is (claimed to be) an exact equation for the linear
estimates of α and β, α1 and β1, respectively.

How can you reconcile equation 26 being exact with equation 25 being exact?

Equation 26 would seem to represent a truncated; and, therefore, approximate form of the Zoeppritz
exact reflection coefficient (equation 25).

If we don’t accept equation 26 as an approximation as being acceptable then we must alter either
equation 25 or equation 26, and we are not going to alter Zoeppritz equation 25.

We are forced to conclude that consistency between equation 25 and equation 26 requires that α1

and β1 must be functions of θ.

Let’s see where that supposition then takes us from equation 26:

R(tan2 θ) = α1(θ) + β1(θ) + [α1(θ)− β1(θ)] tan2 θ; (27)

and, if you choose two value of θ, say θ1 and θ2, then equation 27 will lead to two equations in four
unknowns, α1(θ1), α1(θ2), β1(θ1) and β1(θ2). Not a positive moment.
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The problem here is that we have forgotten the basic meaning and starting point in defining α, β
and α1, β1.

In an inverse scattering series expansion for a parameter in orders of the data it is critically im-
portant to assure that the data in terms of which you are expanding the parameter is sufficient
to determine that parameter. The data needed to determine a parameter is dependent upon what
other parameters are (or are not) in your model; i.e., it depends on the context within which that
parameter resides.

Now consider a two parameter world defined by α(z) and β(z), and the expansions of α and β in
orders of the data. In this case, if we suppose that α and β are expandable in terms of data at
two different plane wave angles assuming that such a relationship between D(z, θ1), D(z, θ2) and
α and β exists and is sufficient to determine α and β (not α1 and β1) then we can write the series
for α(z) and β(z) as follows:

α(z) = α1(z,D(z, θ1), D(z, θ2)) + α2(z,D(z, θ1), D(z, θ2)) + · · ·

and in a compact notation

α(z) = α1(z, θ1, θ2) + α2(z, θ1, θ2) + · · ·

where α1 is the portion of α linear in the data set (D(z, θ1), D(z, θ2)). Similarly,

β(z) = β1(z, θ1, θ2) + β2(z, θ1, θ2) + · · · (28)

If the model only allowed bulk modulus changes, but not density variation then the data required
for solving for α would only consist of data at a single angle; and in that single parameter world

α(z) = α1(z, θ1) + α2(z, θ1) + . . . . (29)

Now in the two parameter inverse problem, the data is(
D(z, θ1)
D(z, θ2)

)
and then D = G0V1G0 is equal to(

D(z, θ1)
D(z, θ2)

)
=
(

(1 + tan2 θ1) (1− tan2 θ1)
(1 + tan2 θ2) (1− tan2 θ2)

)(
α1(z, θ1, θ2)
β1(z, θ1, θ2)

)
(30)

and
(
α1(z, θ1, θ2)
β1(z, θ1, θ2)

)
is linearly related to

(
D(z, θ1)
D(z, θ2)

)
. α1 and β1 will depend upon which par-

ticular angles θ1 and θ2 were chosen, and that is anticipated and perfectly reasonable, since being
a linear approximation in the data could(and should) be a different linear estimate depending on
the data subset you are considering.

Equation 30, a matrix equation, is the first term in the inverse series and determines α1 and β1,
the linear estimate of α and β.
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THE KEY POINT

The lesson here is that the inverse problem doesn’t start with G0V1G0 = D, but with V = V1+V2+
V3 + . . . and the latter equation is driven by a view of what data set can determine the operator
V .

This might seem like a somewhat useless academic exercise, since equation 30 is the equation you
would have solved for α1 and β1 if you just ignored their θ dependence entirely. It is anything
but that. There are at least two problems with that conclusion. The value of the above analysis
is: (1) with α1 and β1 independent of θ, you have difficulty claiming or satisfying the important
requirement that the first equation in the inverse series is exact; and (2) more importantly you can
get into serious conceptual and practical problems in the elastic case if you don’t have very clear
grasp of the underlying inverse issues and relationships in the acoustic case.

3 Elastic case

The scattering theory and the inverse scattering series for the 1-D isotropic elastic earth is developed
in Zhang and Weglein (2009b).

3.1 Background for 2D elastic inversion

In this section we consider the inversion problem in two dimensions for an elastic medium. We
start with the displacement space, and then, for convenience (e.g., Aki and Richards, 2002, Weglein
and Stolt, 1992), we change the basis and transform the equations to PS space. Finally, we do the
elastic inversion in the PS domain.

3.2 In the displacement space

We begin with some basic equations in the displacement space (Matson, 1997):

Lu = f , (31)

L0u = f , (32)

LG = δ, (33)

L0G0 = δ, (34)

where L and L0 are the differential operators that describe the wave propagation in the actual
and reference medium, respectively, u and f are the corresponding displacement and source terms,
respectively, and G and G0 are the corresponding Green’s operators for the actual and reference
medium.
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Following closely Weglein et al. (1997), Weglein et al. (2002) and Weglein et al. (2003), defining
the perturbation V = L0 − L, the Lippmann-Schwinger equation for the elastic media in the
displacement space is

G = G0 +G0V G. (35)

Iterating this equation back into itself generates the Born series

G = G0 +G0V G0 +G0V G0V G0 + · · · . (36)

We define the data D as the measured values of the scattered wave field. Then, on the measurement
surface, we have

D = G0V G0 +G0V G0V G0 + · · · . (37)

Expanding V as a series in orders of D we have

V = V1 + V2 + V3 + · · · . (38)

Substituting equation 38 into equation 37, evaluating equation 37, and setting terms of equal order
in the data equal, the equations that determine V1, V2, . . . from D and G0 would be obtained.

D = G0V1G0, (39)

0 = G0V2G0 +G0V1G0V1G0, (40)

....

In the actual medium, the 2-D elastic wave equation is (Weglein and Stolt, 1992)

Lu ≡
[
ρω2

(
1 0
0 1

)
+
(

∂1γ∂1 + ∂2µ∂2 ∂1(γ − 2µ)∂2 + ∂2µ∂1

∂2(γ − 2µ)∂1 + ∂1µ∂2 ∂2γ∂2 + ∂1µ∂1

)][
u1

u2

]
= f , (41)

where u =
[
u1

u2

]
= displacement, ρ = density, γ = bulk modulus (≡ ρα2 where α = P-wave

velocity), µ = shear modulus (≡ ρβ2 where β = S-wave velocity),

ω = temporal frequency (angular),

∂1 and ∂2 denote the derivative over x and z, respectively, and

f is the source term.

For constant (ρ, γ, µ) = (ρ0, γ0, µ0), (α, β) = (α0, β0), the operator L becomes

L0 ≡
[
ρ0ω

2

(
1 0
0 1

)
+
(
γ0∂

2
1 + µ0∂

2
2 (γ0 − µ0)∂1∂2

(γ0 − µ0)∂1∂2 µ0∂
2
1 + γ0∂

2
2

)]
. (42)

Then,

V ≡L0 − L
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=− ρ0

[
aρω

2 + α2
0∂1aγ∂1 + β2

0∂2aµ∂2 ∂1(α2
0aγ − 2β2

0aµ)∂2 + β2
0∂2aµ∂1

∂2(α2
0aγ − 2β2

0aµ)∂1 + β2
0∂1aµ∂2 aρω

2 + α2
0∂2aγ∂2 + β2

0∂1aµ∂1

]
, (43)

where aρ ≡ ρ
ρ0
− 1, aγ ≡ γ

γ0
− 1 and aµ ≡ µ

µ0
− 1 are the three parameters we choose to do the

elastic inversion. For a 1D earth (i.e. aρ, aγ and aµ are only functions of depth z), the expression
above for V becomes

V = −ρ0

[
aρω

2 + α2
0aγ∂

2
1 + β2

0∂2aµ∂2 (α2
0aγ − 2β2

0aµ)∂1∂2 + β2
0∂2aµ∂1

∂2(α2
0aγ − 2β2

0aµ)∂1 + β2
0aµ∂1∂2 aρω

2 + α2
0∂2aγ∂2 + β2

0aµ∂
2
1

]
. (44)

3.3 Transforming to PS space

For convenience, we can change the basis from u =
[
u1

u2

]
to
(
φP

φS

)
to allow L0 to be diagonal,

Φ =
(
φP

φS

)
=
[
γ0(∂1u1 + ∂2u2)
µ0(∂1u2 − ∂2u1)

]
, (45)

also, we have (
φP

φS

)
= Γ0Πu =

[
γ0(∂1u1 + ∂2u2)
µ0(∂1u2 − ∂2u1)

]
, (46)

where Π =
(
∂1 ∂2

−∂2 ∂1

)
, Γ0 =

(
γ0 0
0 µ0

)
.

In the reference medium, the operator L0 will transform in the new basis via a transformation

L̂0 ≡ ΠL0Π−1Γ−1
0 =

(
L̂P

0 0
0 L̂S

0

)
,

where L̂0 is L0 transformed to PS space, Π−1 =
(
∂1 −∂2

∂2 ∂1

)
∇−2 is the inverse matrix of Π,

L̂P
0 = ω2/α2

0 +∇2, L̂S
0 = ω2/β2

0 +∇2, and

F = Πf =
(
FP

FS

)
. (47)

Then, in PS domain, equation 32 becomes,(
L̂P

0 0
0 L̂S

0

)(
φP

φS

)
=
(
FP

FS

)
. (48)

Since G0 ≡ L−1
0 , let ĜP

0 =
(
L̂P

0

)−1
and ĜS

0 =
(
L̂S

0

)−1
, then the displacement G0 in PS domain

becomes

Ĝ0 = Γ0ΠG0Π−1 =
(
ĜP

0 0
0 ĜS

0

)
. (49)
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So, in the reference medium, after transforming from the displacement domain to PS domain, both
L0 and G0 become diagonal.

Multiplying equation 35 from the left by the operator Γ0Π and from the right by the operator Π−1,
and using equation 49,

Γ0ΠGΠ−1 = Ĝ0 + Ĝ0

(
ΠVΠ−1Γ−1

0

)
Γ0ΠGΠ−1

= Ĝ0 + Ĝ0V̂ Ĝ, (50)

where the displacement Green’s operator G is transformed to the PS domain as

Ĝ = Γ0ΠGΠ−1 =
(
ĜPP ĜPS

ĜSP ĜSS

)
. (51)

The perturbation V in the PS domain becomes

V̂ = ΠVΠ−1Γ−1
0 =

(
V̂ PP V̂ PS

V̂ SP V̂ SS

)
, (52)

where the left superscripts of the matrix elements represent the type of measurement and the right
ones are the source type.

Similarly, applying the PS transformation to the entire inverse series gives

V̂ = V̂1 + V̂2 + V̂3 + · · · . (53)

It follows, from equations 50 and 53 that

D̂ = Ĝ0V̂1Ĝ0, (54)

Ĝ0V̂2Ĝ0 = −Ĝ0V̂1Ĝ0V̂1Ĝ0, (55)

...

where D̂ =
(
D̂PP D̂PS

D̂SP D̂SS

)
are the data in the PS domain.

In the displacement space we have, for equation 31,

u = Gf . (56)

Then, in the PS domain, equation 56 becomes

Φ = ĜF. (57)

On the measurement surface, we have

Ĝ = Ĝ0 + Ĝ0V̂1Ĝ0. (58)

229



Clarifying the meaning of approximate linear inversion MOSRP08

Substituting equation 58 into equation 57, and rewriting equation 57 in matrix form:(
φP

φS

)
=
(
ĜP

0 0
0 ĜS

0

)(
FP

FS

)
+
(
ĜP

0 0
0 ĜS

0

)(
V̂ PP

1 V̂ PS
1

V̂ SP
1 V̂ SS

1

)(
ĜP

0 0
0 ĜS

0

)(
FP

FS

)
. (59)

This can be written as the following two equations

φP = ĜP
0 F

P + ĜP
0 V̂

PP
1 ĜP

0 F
P + ĜP

0 V̂
PS
1 ĜS

0F
S , (60)

φS = ĜS
0F

S + ĜS
0 V̂

SP
1 ĜP

0 F
P + ĜS

0 V̂
SS
1 ĜS

0F
S . (61)

We can see, from the two equations above, that for homogeneous media, (no perturbation, V̂1 = 0),
there are only direct P and S waves and that the two kinds of waves are separated. However,
for inhomogeneous media, these two kinds of waves will be mixed together. If only the P wave is
incident, FP = 1, FS = 0, then the two equations 60 and 61 above are respectively reduced to

φP = ĜP
0 + ĜP

0 V̂
PP
1 ĜP

0 , (62)

φS = ĜS
0 V̂

SP
1 ĜP

0 . (63)

Hence, in this case, there is only the direct P wave ĜP
0 , and no direct wave S. But there are two

kinds of scattered waves: one is the P-to-P wave ĜP
0 V̂

PP
1 ĜP

0 , and the other is the P-to-S wave
ĜS

0 V̂
SP
1 ĜP

0 . For the acoustic case, only the P wave exists, and hence we only have one equation
φP = ĜP

0 + ĜP
0 V̂

PP
1 ĜP

0 .

Similarly, if only the S wave is incident, FP = 0, FS = 1, and the two equations 60 and 61 are,
respectively, reduced to

φP = ĜP
0 V̂

PS
1 ĜS

0 , (64)

φS = ĜS
0 + ĜS

0 V̂
SS
1 ĜS

0 . (65)

In this case, there is only the direct S wave ĜS
0 , and no direct P wave. There are also two kinds of

scattered waves: one is the S-to-P wave ĜP
0 V̂

PS
1 ĜS

0 , the other is the S-to-S wave ĜS
0 V̂

SS
1 ĜS

0 .

3.4 Linear inversion of a 1D elastic medium

Writing equation 54 in matrix form(
D̂PP D̂PS

D̂SP D̂SS

)
=
(
ĜP

0 0
0 ĜS

0

)(
V̂ PP

1 V̂ PS
1

V̂ SP
1 V̂ SS

1

)(
ĜP

0 0
0 ĜS

0

)
, (66)

leads to four equations
D̂PP = ĜP

0 V̂
PP
1 ĜP

0 , (67)

D̂PS = ĜP
0 V̂

PS
1 ĜS

0 , (68)

D̂SP = ĜS
0 V̂

SP
1 ĜP

0 , (69)

D̂SS = ĜS
0 V̂

SS
1 ĜS

0 . (70)
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For zs = zg = 0, in the (ks, zs; kg, zg;ω) domain, we get the following four equations relating the
linear components of the three elastic parameters and the four data types:

D̃PP (kg, 0;−kg, 0;ω) =− 1
4

(
1−

k2
g

ν2
g

)
ã(1)

ρ (−2νg)−
1
4

(
1 +

k2
g

ν2
g

)
ã(1)

γ (−2νg)

+
2k2

gβ
2
0

(ν2
g + k2

g)α2
0

ã(1)
µ (−2νg), (71)

D̃PS(νg, ηg) = −1
4

(
kg

νg
+
kg

ηg

)
ã(1)

ρ (−νg − ηg)−
β2

0

2ω2
kg(νg + ηg)

(
1−

k2
g

νgηg

)
ã(1)

µ (−νg − ηg), (72)

D̃SP (νg, ηg) =
1
4

(
kg

νg
+
kg

ηg

)
ã(1)

ρ (−νg − ηg) +
β2

0

2ω2
kg(νg + ηg)

(
1−

k2
g

νgηg

)
ã(1)

µ (−νg − ηg), (73)

D̃SS(kg, ηg) = −1
4

(
1−

k2
g

η2
g

)
ã(1)

ρ (−2ηg)−

[
η2

g + k2
g

4η2
g

−
2k2

g

η2
g + k2

g

]
ã(1)

µ (−2ηg), (74)

where

ν2
g + k2

g =
ω2

α2
0

,

η2
g + k2

g =
ω2

β2
0

.

For the P-wave incidence case (see Figure 1), using k2
g/ν

2
g = tan2 θ and k2

g/(ν
2
g +k2

g) = sin2 θ, where
θ is the P-wave incident angle, equation 71 becomes

D̃PP (νg, θ) = −1
4
(1− tan2 θ)ã(1)

ρ (−2νg)−
1
4
(1 + tan2 θ)ã(1)

γ (−2νg) +
2β2

0 sin2 θ

α2
0

ã(1)
µ (−2νg). (75)

In this case, when β0 = β1 = 0, equation 75 reduces to the acoustic two parameter case equation 7
in Zhang and Weglein (2005) for zg = zs = 0.

D̃(qg, θ) = −ρ0

4

[
1

cos2 θ
α̃1(−2qg) + (1− tan2 θ)β̃1(−2qg)

]
, (76)

3.5 Direct non-linear inversion of 1D elastic medium

Writing equation 55 in matrix form:(
ĜP

0 0
0 ĜS

0

)(
V̂ PP

2 V̂ PS
2

V̂ SP
2 V̂ SS

2

)(
ĜP

0 0
0 ĜS

0

)
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= −
(
ĜP

0 0
0 ĜS

0

)(
V̂ PP

1 V̂ PS
1

V̂ SP
1 V̂ SS

1

)(
ĜP

0 0
0 ĜS

0

)(
V̂ PP

1 V̂ PS
1

V̂ SP
1 V̂ SS

1

)(
ĜP

0 0
0 ĜS

0

)
, (77)

leads to four equations

ĜP
0 V̂

PP
2 ĜP

0 = −ĜP
0 V̂

PP
1 ĜP

0 V̂
PP
1 ĜP

0 − ĜP
0 V̂

PS
1 ĜS

0 V̂
SP
1 ĜP

0 , (78)

ĜP
0 V̂

PS
2 ĜS

0 = −ĜP
0 V̂

PP
1 ĜP

0 V̂
PS
1 ĜS

0 − ĜP
0 V̂

PS
1 ĜS

0 V̂
SS
1 ĜS

0 , (79)

ĜS
0 V̂

SP
2 ĜP

0 = −ĜS
0 V̂

SP
1 ĜP

0 V̂
PP
1 ĜP

0 − ĜS
0 V̂

SS
1 ĜS

0 V̂
SP
1 ĜP

0 , (80)

ĜS
0 V̂

SS
2 ĜS

0 = −ĜS
0 V̂

SP
1 ĜP

0 V̂
PS
1 ĜS

0 − ĜS
0 V̂

SS
1 ĜS

0 V̂
SS
1 ĜS

0 . (81)

Since V̂ PP
1 relates to D̂PP , V̂ PS

1 relates to D̂PS , and so on, the four components of the data will
be coupled in the non-linear elastic inversion. We cannot perform the direct non-linear inversion
without knowing all components of the data. As shown in Zhang and Weglein (2005) and this
note, when the work on the two parameter acoustic case is extended to the present three parameter
elastic case, it is not just simply adding one more parameter, but there are more issues involved.
Even for the linear case, the linear solutions found in equations 71 ∼ 74 are much more complicated
than those of the acoustic case. For instance, four different sets of linear parameter estimates are
produced from each component of the data. Also, generally four distinct reflector mislocations arise
from the two reference velocities (P-wave velocity and S-wave velocity).

The three parameters we are seeking to determine

• aγ → relative change in bulk modulus,

• aρ → relative change in density,

• aµ → relative change in shear modulus,

are to be expanded as a series in the data. What data?

The answer is once again the data needed to determine those three quantities.

What H. Zhang’s thesis has demonstrated for the first time is not only an explicit and direct set
of equations for improving upon linear estimates of the changes in those elastic properties, but
perhaps equally and maybe even more important, is for the first time the absolutely clear data
requirements for determining aγ , aρ and aµ.

The data requirements are

D =
(
D̂PP D̂PS

D̂SP D̂SS

)
, (82)

for a 2D earth and generalize to a 3× 3 matrix for a 3D earth with SH and SV shear waves.

The 2D message is delivered in equation 77, equations 78-81 that the first non-linear contribution
to aγ , aµ, aρ requires that data; and, hence the exact determination of those elastic quantities also
require that data set.(

V PP V PS

V SP V SS

)
=
(
V PP

1 V PS
1

V SP
1 V SS

1

)
+
(
V PP

2 V PS
2

V SP
2 V SS

2

)
+ · · · (83)
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The logic is as follows: aγ

aµ

aρ

 requires
(
D̂PP D̂PS

D̂SP D̂SS

)
since

 a
(2)
γ

a
(2)
µ

a
(2)
ρ

 requires
(
D̂PP D̂PS

D̂SP D̂SS

)
. Hence

 a
(1)
γ

a
(1)
µ

a
(1)
ρ


must mean linear in

(
D̂PP D̂PS

D̂SP D̂SS

)
, i.e., linear in the data needed to determine

 aγ

aµ

aρ

.

Inverting
D̂PP = GP

0 V
PP
1 GP

0

alone for a(1)
γ , a(1)

µ and a
(1)
ρ while mathematically achievable is a challenged and incorrect linear

relationship since what you determine from that procedure doesn’t represent the linear estimate of
those quantities in terms of a data that can actually determine those quantities.

Solving for a(1)
γ , a(1)

µ and a(1)
ρ from D̂PP alone is an injured or challenged linear estimate.

The inverse scattering series and task specific subseries need to : (1) treat the linear term with
respect and then (2) the higher order terms can carry out their purpose.

If you injure the linear estimate, the inverse scattering series cannot recover or compensate–it wants
the linear estimate to be the linear estimate, and never expects it to be exact or close to exact, but
it never expects it to be less than linear, as well. Let linear be linear.

The power and promise of the inverse scattering series derives from its deliberate and physically
consistent and explicit nature. It recognizes that when you perturb anything in a medium the
associated perturbation in the wavefield is always non-linearly related to that change.

The inverse implies that the medium perturbation is itself non-linearly related to the perturbation
in the wavefield; including the change in the wavefield on the measurement surface.

ψs = (ψs)1 + (ψs)2 + (ψs)3 + . . . (84)
V = V1 + V2 + V3 + . . . , (85)

where (ψs)n is the portion of ψs which is the nth order in V and where Vn is the portion of V
which is the nth order in the measured values of ψs. That’s it, equations 84 and 85. That is all you
assume, and that is incontrovertible and hard to argue against.

Beyond that point the process and procedure for determining V1, V2, V3, . . . is out of your hands
and away from your control. How you find V1 from D is prescribed and what you do with V1

to determine V2 is also prescribed. That non-linear explicit and direct nature, and the steps to
determine those terms V1, V2, V3, . . . are not decision-making opportunities for you. If you decide
what to do with V1 rather than have the non-linear relationship between data and V decide, then
you step away from a single and defined physics into, e.g., the math world of iterative linear inversion
or model matching. How do you formulate a multiple removal algorithm concept in iterative linear
inverse or model matching scheme? The latter immediately aims to either improve or match the
model properties with the subsurface. From the inverse scattering series perspective, the latter
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all or nothing strategy is: (1) missing the opportunity to achieve other useful but less daunting
tasks, i.e., multiple removal and depth imaging; and (2) moving at the first step straight into the
most challenging task: parameter estimation, with all of the pitfalls of insufficient model-types and
bandwidth sensitivities.

For the inverse scattering series the decisions are not under your control or influence. It is away
from you and it is carrying out its single-minded purpose. It has one physical reference model,
the water, and a single unchanged separation of the earth into a reference medium and a general
perturbation operator that can accommodate a very wide range of earth model types, that need
not be specified unless you want the direct non-linear AVO subseries. The ISS provides a set of
direct equations to solve, with an analytic unchanged inverse operation.

Only that 100% physics consistent inverse formalism predicted that you required all four compo-

nents of the data
(
D̂PP D̂PS

D̂SP D̂SS

)
to even linearly estimate elastic properties. Iterative linear

inversion tries to substitute a set of constantly changed problems with linear updates for a single
entirely prescriptive, consistent and explicit non-linear physics. The latter is the inverse scatter-
ing series, the former has an attraction to linear inverses (and generalized inverses) which has no
single physical theory and consistency. Linear inversion and generalized inverse theory are part of
standard graduate training in geophysics; and, hence it’s easy to understand trying to recast the
actual non-linear problem into a set of iterative linear problems where the tools are familiar. The
model matching schemes and iteratively linear inversion are reasonable and sometimes useful but
they are more math than physics and have no way to provide the framework for inversion that
staying consistent with the physics will provide.

The practical added value that direct ISS non-linear inversion provided beyond linear inversion, is
described in Zhang (2006), Zhang and Weglein (2005), Zhang and Weglein (2006), Zhang and We-
glein (2009a), and Zhang and Weglein (2009b). There are circumstances where very different target
lithologies have very similar changes in mechanical properties. The added-value was demonstrated
in 4D application in discriminating between pressure and fluid saturation effects. That distinction
results in the difference between a drill and a no-drill decision.

4 Conclusion

There is a unique and unambiguous data requirement message sent out from the inverse scatter-
ing series for linear and non-linear direct inversion. Other methods and approaches that look at
the inverse problem, e.g., either linear or beyond linear, e.g., iterative linear or model matching
indirect inversion methods have never and will never provide that clarity and definition. We can
model-match Dpp or iteratively invert Dpp until the cows come home and you will find ambiguities
and resolution challenges, and when those methods use more data, they sometimes produce less
ambiguity and better resolution, but we don’t know why.

As a final remark it is interesting to note that the first and linear term of the elastic inverse
problem was not only influenced by the non-linear term, it was in fact defined by that term.
That data requirement message, along with the entire inverse series apparatus, results from the
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Figure 1: Response of incident compressional wave on a planar elastic interface. α0, β0 and ρ0 are the
compressional wave velocity, shear wave velocity and density of the upper layer, respectively; α1,
β1 and ρ1 denote the compressional wave velocity, shear wave velocity and density of the lower
layer. RPP , RSP , TPP and TSP denote the coefficients of the reflected compressional wave,
the reflected shear wave, the transmitted compressional wave and the transmitted shear wave,
respectively (Foster et al., 1997).

observation that the perturbed wavefield and the perturbation are non-linearly related. Honor and
respect that fundamental non-linear relationship and a physics driven set of consistent, deliberate
and purposeful algorithms and a clear platform and unambiguous framework (that explains earlier
anecdotal experiences) are the dividend and value.
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Abstract

A task specific multi-parameter (more than one mechanical property changes across a reflector)
direct non-linear inversion subseries of the inverse scattering series is derived and tested for
a vertically velocity and density varying acoustic medium. Here “task specific” means that
the terms in the distinct subseries obtained corresponding to the tasks for imaging-only and
inversion-only are identified and separated, and “direct” means that there are formulas that
explicitly and straight-away solve for and output the physical properties, without e.g., search
algorithms, model matching and optimization schemes, and proxies that typically characterize
indirect methods. Numerical test results with analytic data indicate that one term beyond linear
provides added value beyond standard linear techniques, and the improved estimates are valid
over a larger range of angles. The acoustic direct inverse target identification is non-linear. It
serves as an important step for new concepts and methods to guide the much more complicated
and minimally realistic elastic inverse for exploration seismology target identification purposes.

1 Introduction

The objective of seismic exploration is to determine the location (imaging) and mechanical proper-
ties (inversion) of subsurface targets to identify hydrocarbon resources in the earth using recorded
data. Current inversion methods include: (1) the linear approximation (e.g., Clayton and Stolt,
1981) which is often useful, especially in the presence of small earth property changes across the
boundary and/or small angle reflections, and (2) indirect model matching methods with global
searching (e.g., Tarantola et al., 1984; Sen and Stoffa, 1995; Mora, 1987; C. Bunks and Chavent,
1995; E. Forgues and Pratt, 1998 and Shin and Min, 2006) which define an objective function
assumed to be minimized when the best fitting model is obtained. The assumptions of the former
methods (like the small contrast assumptions) are often violated in practice and can cause erroneous
predictions; the latter category usually involves a significant and often daunting computation effort
(especially in multi-D cases) and/or sometimes have reported erroneous or ambiguous results. In
order to provide more accurate and reliable target identification especially with large contrast, large
angle target geometry, in present paper, a more comprehensive multi-parameter multi-dimensional
direct non-linear inversion framework is developed based on the inverse scattering task-specific sub-
series (see, e.g., Weglein et al., 2003). The inverse scattering series has a tremendous generality and
comprehensiveness allowing many distinct traditional processing objectives to be achieved within
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a single framework, but without the traditional need to provide information about the properties
that govern actual wave propagation in the earth. It begins with scattering theory, which is the
relationship between the perturbation or alteration in a medium’s properties and the concomitant
perturbation or change in the wave field. The relationship between those two changes is always
non-linear. Any change in a medium will result in a change in the wave-field that is non-linearly
related to that physical property change. Specifically, in thispresent paper we examine the relation-
ship between the perturbation in a medium and the perturbation in a wave field for the case of a
1D variable velocity and variable density acoustic medium. Like other methods, the algorithm pre-
sented in the current paper also has its assumptions. We assume the original unperturbed medium
is a homogeneous whole-space. We further assume that free surface and internal multiples have
been removed from the recorded data (see, e.g., Weglein et al., 2003), and we assume that we are
recording primaries. Our objectives are to: (1) locate reflectors and (2) determine medium prop-
erties of the actual medium. In thiscurrent paper we present: (1) the first derivation of equations
to directly achieve those two distinct objectives for a one dimensional velocity and density varying
acoustic medium 1, and (2) we then reduce this general formalism to the special case of a single
horizontal reflector, where the acoustic medium above the reflector is known, but the objective is
to determine the acoustic properties of the half-space below the reflector.

The original inverse scattering series research aimed at separating imaging and inversion tasks on
primaries was developed for a 1D acoustic one parameter case (constant density medium, only
velocity variable in depth) and a plane wave at normal incidence (Weglein et al., 2002; Shaw et al.,
2003). In thispresent paper we move a step closer to seismic exploration relevance by extending that
earlier work to a multi-parameter acoustic model — two parameter case (velocity and density vary
vertically in depth) and allowing for point sources and receivers over a 1D acoustic medium. Clayton
and Stolt (1981) gave a two parameter linear inversion solution for 2D acoustic media (velocity and
density vary both vertically and laterally). In thispresent paper, we use the same parameters but
concentrate on 1D acoustic media to derive the direct non-linear inversion solution. The extension
of this work to the 1D isotropic elastic medium case using three parameters is presented in another
paper Zhang and Weglein (2006) or Zhang and Weglein (2009). In the application of the direct
non-linear inverse algorithm, we move one step each time (e.g., from one parameter 1D acoustic
case to two parameter 1D acoustic case, or to one parameter 2D acoustic case, instead of ‘jumping’
directly to two parameter 2D acoustic case) so that we can solve the problem step by step and learn
lessons from each step which would guide us to step further towards our goal of greater realism
and increased reliable prediction. For one parameter 1D and 2D acoustic media, two important
references on direct non-linear imaging with reference velocity are presented by Shaw (2005) and
Liu et al. (2005), respectively. It has been shown in thiscurrent paper that imaging and inversion
for two parameter medium are much more complicated compared to one parameter case, although
it seems like just simply adding one parameter. Examples of the new inverse issues that arise in a
two parameter world (and needed responses) that have no one parameter analogue are leakage (and
the inverse scattering series response for that new challenge) and the identification of the special
parameter for inversion that avoids leakage, and the conceptual insights that this understanding
provides for our campaign to address pressing imaging and inversion challenges.

1For numerical example, please see Shaw (2005) for imaging-only term tests on one parameter acoustic cases and
Zhang (2006) for inversion-only term tests on one or multi-parameter cases.
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For the direct non-linear inversion solution obtained in thispresent paper, the tasks for imaging-only
and inversion-only terms are separated. Tests with analytic data indicate significant added value
for parameter predictions, beyond linear estimates, in terms of both the proximity to actual value
and the increased range of angles over which the improved estimates are useful.

A closed form of the inversion terms for the one-interface case is also obtained. This closed form
might be useful in predicting the precritical data using the postcritical data. 2

A special parameter ∆c (∆c = c−c0) (P-wave velocity change across an interface) is also found. Its
Born inversion (∆c)1 always has the right sign. That is, the sign of (∆c)1 is always the same as that
of ∆c. In practice, it could be very useful to know whether the velocity increases or decreases across
the interface. After changing parameters, from α (relative changes in P-wave bulk modulus) and β
(relative changes in density) to velocity and β, another form of the non-linear solution is obtained.
There is no leakage correction (please see details in the section on three important messages) in this
solution. This new form clearly indicates that the imaging terms “care” only about velocity errors,
...and produce the depth image without knowing or requiring the velocity, in principle or practice,
neither directly nor indirectly. The second term in the imaging series first determines if the input
velocity is adequate. If the velocity is determined to be adequate then the second term and all the
terms beyond that term in the imaging series are zero. In that case the imaging series reduces to
its first term which is conventional depth imaging. This generalizes to multi-D media, and also
points to possible model-type independent imaging which only depends on velocity changes.

The following section is a brief introduction of the inverse scattering subseries. We then gave the
one dimensional multi-parameter acoustic derivation in detail, and that is followed by the numerical
tests for the single reflector case. We also provided a further discussion about the special physical
non-leaking acoustic parameter.

2 Inverse scattering subseries

Scattering theory relates the perturbation (the difference between the reference and actual medium
properties) to the scattered wave field (the difference between the reference medium’s and the
actual medium’s wave field). It is therefore reasonable that in discussing scattering theory, we
begin with the basic wave equations governing the wave propagation in the actual and reference
medium, respectively 3,

LG = δ, (1)

L0G0 = δ, (2)

where L and L0 are respectively the differential operators that describe wave propagation in the
actual and reference medium, and G and G0 are the corresponding Green’s operators. The δ on
the right hand side of both equations is a Dirac delta operator and represents an impulsive source.

2Precritical data refers to a plane wave incident upon a reflector, and the emanating reflected wave-field emerges
at less than the critical angle from the normal.

3In this introductory math development, we follow closely Weglein et al. (1997); Weglein et al. (2002); Weglein
et al. (2003).
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The perturbation is defined as V = L0 − L. The Lippmann-Schwinger equation,

G = G0 +G0V G, (3)

relates G,G0 and V (see, e.g., Taylor, 1972). Iterating this equation back into itself generates the
forward scattering series

G = G0 +G0V G0 +G0V G0V G0 + · · · . (4)

Then the scattered field ψs ≡ G−G0 can be written as

ψs = G0V G0 +G0V G0V G0 + · · ·
= (ψs)1 + (ψs)2 + · · · , (5)

where (ψs)n is the portion of ψs that is nth order in V . The measured values of ψs are the data,
D, where

D = (ψs)ms = (ψs)on the measurement surface.

In the inverse scattering series, expanding V as a series in orders of D,

V = V1 + V2 + V3 + · · · , (6)

where the subscript “i” in Vi (i=1, 2, 3, ...) denotes the portion of V i-th order in the data.
Substituting equation 6 into equation 5, and evaluating equation 5 on the measurement surface
yields

D = [G0(V1 + V2 + · · · )G0]ms + [G0(V1 + V2 + · · · )G0(V1 + V2 + · · · )G0]ms + · · · . (7)

Setting terms of equal order in the data equal, leads to the equations that determine V1, V2, . . .
directly from D and G0.

D = [G0V1G0]ms, (8)

0 = [G0V2G0]ms + [G0V1G0V1G0]ms, (9)

0 =[G0V3G0]ms + [G0V1G0V2G0]ms + [G0V2G0V1G0]ms

+ [G0V1G0V1G0V1G0]ms, (10)

etc. Equations (8) ∼ (10) permit the sequential calculation of V1, V2, . . ., and, hence, achieve
full inversion for V (see equation 6 from the recorded data D and the reference wave field (i.e.,
the Green’s operator of the reference medium) G0. Therefore, the inverse scattering series is a
multi-D inversion procedure that directly determines physical properties using only reflection data
and reference medium information.
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3 Derivation of α1, β1 and α2, β2

In this section, we will consider a 1D acoustic two parameter earth model (e.g. bulk modulus and
density or velocity and density). We start with the 3D (3D earth model and 3D geometrical spread-
ing or wave propagation) acoustic wave equations in the actual and reference medium (Clayton and
Stolt, 1981; Weglein et al., 1997)[

ω2

K(r)
+∇ · 1

ρ(r)
∇
]
G(r, rs;ω) = δ(r− rs), (11)

[
ω2

K0(r)
+∇ · 1

ρ0(r)
∇
]
G0(r, rs;ω) = δ(r− rs), (12)

where G(r, rs;ω) and G0(r, rs;ω) are respectively the free-space causal Green’s functions that
describe wave propagation in the actual and reference medium. K = c2ρ, is P-wave bulk modulus,
c is P-wave velocity and ρ is the density. The quantities with subscript “0” are for the reference
medium, and those without the subscript are for the actual medium. The perturbation is

V = L0 − L =
ω2α

K0
+∇ · β

ρ0
∇, (13)

where α = 1− K0
K and β = 1− ρ0

ρ are the two parameters we choose to do the inversion. Assuming
both ρ0 and c0 are constants, equation 12 becomes(

ω2

c20
+∇2

)
G0(r, rs;ω) = ρ0δ(r− rs). (14)

For the 1-D1D vertically varying only medium case, the perturbation V has the following form

V (z,∇) =
ω2α(z)
K0

+
1
ρ0
β(z)

∂2

∂x2
+

1
ρ0

∂

∂z
β(z)

∂

∂z
. (15)

V (z,∇), α(z) and β(z) can be expanded respectively as

V (z,∇) = V1(z,∇) + V2(z,∇) + · · · , (16)

α(z) = α1(z) + α2(z) + · · · , (17)

β(z) = β1(z) + β2(z) + · · · . (18)

Where the subscript “i” in Vi, αi and βi (i=1, 2, 3, ...) denote the portion of those quantities i-th
order in the data.Then we have

V1(z,∇) =
ω2α1(z)
K0

+
1
ρ0
β1(z)

∂2

∂x2
+

1
ρ0

∂

∂z
β1(z)

∂

∂z
, (19)

V2(z,∇) =
ω2α2(z)
K0

+
1
ρ0
β2(z)

∂2

∂x2
+

1
ρ0

∂

∂z
β2(z)

∂

∂z
, (20)
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....

SSpecifically, for the 1D acoustic medium mentioned above and 2D data (2D geometrical spreading)
case, substituting equation 19 into equation 8, we can get the linear solution for α1 and β1 in the
frequency domain (more details about the derivation could be found in Zhang, 2006)

D̃(qg, θ, zg, zs) = −ρ0

4
e−iqg(zs+zg)

[
1

cos2 θ
α̃1(−2qg) + (1− tan2 θ)β̃1(−2qg)

]
, (21)

where D̃, α̃1 and β̃1 are in the frequency domain after the Fourier transform over z. The subscripts
s and g denote source and receiver quantities respectively, and qg, θ and k = ω/c0 shown in Figure
1, have the following relations (Matson, 1997)

qg = qs = k cos θ,
kg = ks = k sin θ.

Similarly, substituting equation 20 into equation 9, we can get the solution for α2(z) and β2(z) as
a function of α1(z) and β1(z)

1
cos2 θ

α2(z) + (1− tan2 θ)β2(z) =− 1
2 cos4 θ

α2
1(z)−

1
2
(1 + tan4 θ)β2

1(z) +
tan2 θ

cos2 θ
α1(z)β1(z)

− 1
2 cos4 θ

α′1(z)

z∫
0

dz′[α1(z′)− β1(z′)]

+
1
2
(tan4 θ − 1)β′1(z)

z∫
0

dz′[α1(z′)− β1(z′)], (22)

where α′1(z) = dα1(z)
dz , β′1(z) = dβ1(z)

dz .

The first two parameter direct non-linear inversion of 1D acoustic media for a 2D experiment has
been obtained. As shown in equations 21 and 22, given two different angles θ, we can determine α1,
β1 and then α2, β2. For a single-interface example, it can be shown that only the first three terms on
the right hand side contribute to parameter predictions, while the last two terms perform imaging
in depth since they will be zero after the integration across the interface (see the section on three
important messages). Therefore, in this solution, the tasks for imaging-only and inversion-only
terms are separated.

For the θ = 0 and constant density case, equation 22 reduces to the non-linear solution for 1D one
parameter normal incidence case (e.g., Shaw, 2005)

α2(z) = −1
2

α2
1(z) + α′1(z)

z∫
−∞

dz′α1(z′)

 . (23)

If another choice of free parameter other than θ (e.g., ω or kh) is selected, then the functional
form between the data and the first order perturbation equation 21 would change. Furthermore,
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the relationship between the first and second order perturbation equation 22 would, then, also be
different, and new analysis would be required for the purpose of identifying specific task separated
terms. Empirically, the choice of θ as free parameter (for a 1D medium) is particularly well suited
for allowing a task separated identification of terms in the inverse series.

There are several important messages that exist in equations 21 and 22: (1) purposeful perturbation,
(2) leakage, and (3) the special parameter for inversion. These three concepts will be discussed
later in thispresent paper. In equation 21, it seems simple and straightforward to use data at two
angles in order to obtain α1 and β1. This is what we do in thiscurrent paper. However, by doing
this, it requires a whole new understanding of the definition of “the data”. That is part of the
discoveries of on-going research activities by Weglein et al. (2007)Weglein (2007). The imaging
algorithm given by Liu et al. (2005) has been generalized to the two parameter case by Weglein et
al. (2007)Weglein (2007) based on the understanding of equation 22.

4 A special case: one-interface model

In this section, we derive a closed form for the inversion-only terms. From this closed form, we can
easily get the same inversion terms as those in equations 21 and 22. We also show some numerical
tests using analytic data. From the numerical results, we see how the corresponding non-linear
terms contribute to the parameter predictions such as the relative changes in the P-wave bulk
modulus

(
α = ∆K

K

)
, density

(
β = ∆ρ

ρ

)
, impedance

(
∆I
I

)
and velocity

(
∆c
c

)
.

4.1 Closed form for the inversion terms

1. Incident angle not greater than critical angle, i.e. θ ≤ θc

For a single interface example, the reflection coefficient has the following form (Keys, 1989)

R(θ) =
(ρ1/ρ0)(c1/c0)

√
1− sin2 θ −

√
1− (c21/c

2
0) sin2 θ

(ρ1/ρ0)(c1/c0)
√

1− sin2 θ +
√

1− (c21/c
2
0) sin2 θ

. (24)

After adding 1 on both sides of equation 24, we can get

1 +R(θ) =
2 cos θ

cos θ + (ρ0/ρ1)
√(

c20/c
2
1

)
− sin2 θ

. (25)

Then, using the definitions of α = 1− K0
K1

= 1− ρ0c20
ρ1c21

and β = 1− ρ0

ρ1
, equation 25 becomes

4R(θ)
(1 +R(θ))2

=
α

cos2 θ
+ (1− tan2 θ)β − αβ

cos2 θ
+ β2 tan2 θ, (26)

which is the closed form we derived for the one interface two parameter acoustic inversion-only
terms.
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2. Incident angle greater than critical angle, i.e. θ > θc

For the same single interface example as above and looking at the equation 24, if c0 < c1, then the
term 1−(c21/c

2
0) sin2 θ under the square root would be less than zero as θ > θc, equation 24 becomes

R(θ) =
(ρ1/ρ0)(c1/c0)

√
1− sin2 θ − i

√
(c21/c

2
0) sin2 θ − 1

(ρ1/ρ0)(c1/c0)
√

1− sin2 θ + i
√

(c21/c
2
0) sin2 θ − 1

. (27)

Then, equation 25 becomes

1 +R(θ) =
2 cos θ

cos θ + i (ρ0/ρ1)
√

sin2 θ −
(
c20/c

2
1

) , (28)

which leads to the same closed form as equation 26

4R(θ)
(1 +R(θ))2

=
α

cos2 θ
+ (1− tan2 θ)β − αβ

cos2 θ
+ β2 tan2 θ.

As we see, this closed form is valid for all incident angles.

In addition, for normal incidence (θ = 0) and constant density (β = 0) media, the closed form
equation 26 will be reduced to

α =
4R

(1 +R)2
. (29)

This represents the relationship between α and R for the one parameter 1D acoustic constant
density medium and 1D normal incidence obtained in Innanen (2003). In this case, α becomes
1− c20/c

2
1 and R becomes (c1 − c0) / (c1 + c0).

3. Derivation of the inversion terms from the closed form

From the closed form equation 26, using Taylor expansion on the left hand side

1
(1 +R(θ))2

=
[
1−R(θ) +R2(θ)− . . .

]2
,

and setting the terms of equal order in the data equal, we have
α1

cos2 θ
+ (1− tan2 θ)β1 = 4R(θ), (30)

α2

cos2 θ
+ (1− tan2 θ)β2 = −1

2
α2

1

cos4 θ
− 1

2
(1 + tan4 θ)β2

1 +
tan2 θ

cos2 θ
α1β1. (31)

For a one-interface example (in Figure 2), equations 21 and 22 will respectively reduce to the same
form as equations 30 and 31, which is shown below.

Assume the interface surface is at depth z = a, and suppose zs = zg = 0. Using the analytic data
(Clayton and Stolt, 1981; Weglein et al., 1986),

D̃(qg, θ) = ρ0R(θ)
e2iqga

4πiqg
, (32)
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and substituting equation 32 into equation 21, after Fourier transformation over 2qg, for z > a and
fixed θ, we get

1
cos2 θ

α1(z) + (1− tan2 θ)β1(z) = 4R(θ)H(z − a). (33)

Also, the non-linear solution equation 22 will reduce to

1
cos2 θ

α2(z) + (1− tan2 θ)β2(z) =− 1
2 cos4 θ

α2
1(z)−

1
2
(1 + tan4 θ)β2

1(z)

+
tan2 θ

cos2 θ
α1(z)β1(z), (34)

The two equations 33 and 34 agree with equations 30 and 31, respectively.

4.2 Numerical tests

From equation 33, we choose two different angles to solve for α1 and β1

β1(θ1, θ2) = 4
R(θ1) cos2 θ1 −R(θ2) cos2 θ2

cos(2θ1)− cos(2θ2)
, (35)

α1(θ1, θ2) = β1(θ1, θ2) + 4
R(θ1)−R(θ2)

tan2 θ1 − tan2 θ2
. (36)

Similarly, from equation 34, given two different angles we can solve for α2 and β2 in terms of α1

and β1

β2(θ1, θ2) =
[
−1

2
α2

1

(
1

cos2 θ1
− 1

cos2 θ2

)
+ α1β1

(
tan2 θ1 − tan2 θ2

)
− 1

2
β2

1

×
(

cos2 θ1 − cos2 θ2 +
sin4 θ1
cos2 θ1

− sin4 θ2
cos2 θ2

)]
/ [cos(2θ1)− cos(2θ2)] , (37)

α2(θ1, θ2) =β2(θ1, θ2) +
[
−1

2
α2

1

(
1

cos4 θ1
− 1

cos4 θ2

)
+ α1β1

(
tan2 θ1
cos2 θ1

− tan2 θ2
cos2 θ2

)
−1

2
β2

1

(
tan4 θ1 − tan4 θ2

)]
/
(
tan2 θ1 − tan2 θ2

)
; (38)

where α1 and β1 in equations 37 and 38 denote α1(θ1, θ2) and β1(θ1, θ2), respectively.

For a specific model, ρ0 = 1.0g/cm3, ρ1 = 1.1g/cm3, c0 = 1500m/s and c1 = 1700m/s, in the
following figures we give the results for the relative changes in the P-wave bulk modulus

(
α = ∆K

K

)
,

density
(
β = ∆ρ

ρ

)
, impedance

(
∆I
I

)
and velocity

(
∆c
c

)
corresponding to different pairs of θ1 and

θ2.

From Figure 3, we can see that when we add α2 to α1, the result is much closer to the exact value
of α. Furthermore, the result is better behaved; i.e., the plot surface becomes flatter, over a larger
range of precritical angles. Similarly, as shown in Figure 4, the results of β1 + β2 are much better
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than those of β1. In addition, the sign of β1 is wrong at some angles, while, the results for β1 + β2

always have the right sign. So after including β2, the sign of the density is corrected, which is very
important in the earth identification, and also the results of ∆I

I (see Figure 5 ) and ∆c
c (see Figure

6) are much closer to their exact values respectively compared to the linear results.

Especially, the values of
(

∆c
c

)
1

are always greater than zero, that is, the sign of (∆c)1 is always
positive, which is the same as that of the exact value ∆c. We will further discuss this in the next
section.

5 Three important messages

As mentioned before, in general, since the relationship between data and target property changes
is non-linear, linear inversion will produce errors in target property prediction. When one actual
property change is zero, the linear prediction of the change can be non-zero. For example, con-
sidering equation 24 and equation 35, in the case of ρ1 = ρ0, the actual density change β is zero,
but the linear approximation of the change β1 could be non-zero. Also, when the actual change
is positive, the predicted linear approximation can be negative. There is a special parameter for
linear inversion of acoustic media, that never suffers the latter problem.

From equation 24 we can see that when c0 = c1, the reflection coefficient is independent of θ, then
from the linear form equation 36, we have(

∆c
c

)
1

=
1
2
(α1 − β1) = 0 when ∆c = 0,

i.e., when ∆c = 0, (∆c)1 = 0. This generalizes to (∆c)1 > 0 when ∆c > 0, or (∆c)1 < 0 when
∆c < 0, as well. This can be shown mathematically (See Appendix B for details).

Therefore, we can, first, get the right sign of the relative change in P-wave velocity from the linear
inversion (∆c)1, then, get more accurate values by including non-linear terms.

Another interesting point is that the image does not move when the velocity does not change across
an interface, i.e., c0 = c1, since, in this situation, the integrands of imaging terms α1−β1 in equation
22 are zero. We can see this more explicitly when we change the two parameters α and β to ∆c

c
and β. Using the two relationships below (See details in Appendix A)(

∆c
c

)
1

=
1
2
(α1 − β1),

and (
∆c
c

)
2

=
1
2

[
1
4
(α1 + β1)2 − β2

1 + (α2 − β2)
]
,

rewriting equation 22 asequation 22 can be rewritten as

1
cos2 θ

(
∆c
c

)
2

(z) + β2(z) =
cos2 θ − 2
2 cos4 θ

(
∆c
c

)2

1

(z)− 1
2
β2

1(z)

246



Direct non-linear acoustic inversion MOSRP08

− 1
cos4 θ

(
∆c
c

)′
1

(z)

z∫
0

dz′
(

∆c
c

)
1

− 1
cos2 θ

β′1(z)

z∫
0

dz′
(

∆c
c

)
1

. (39)

This equation indicates two important concepts. One is leakage: there is no leakage correction at
all in this expression. Here the leakage means that, if the actual value of α (relative changes in
P-wave bulk modulus) is zero, its linear approximation α1 could be non-zero since α and β are
coupled together (like the coupled term α1β1 in equation 22) and α1 could get leakage values from
β1. While in equation 39, no such coupled term is present at all and thus, if the actual changes in
the velocity are zero, then its linear inversion

(
∆c
c

)
1

would be zero and there would be no leakage
from β1. This leakage issue or coupled term has no analogue in the 1D one parameter acoustic
case (equation 23) since in this case we only have one parameter and there is no other parameter
to leak into. In other words, in the one parameter (velocity) case, each ‘jump’ in the amplitude
of the data (primaries only) corresponds to each wrong location with a wrong amplitude for the
parameter predicted in the linear inverse step; while in the two parameter case of thiscurrent paper,
each ‘jump’ in the data no longer has the simple one-to-one relationship with the amplitude and
location of the two parameters.

The other concept is purposeful perturbation. The integrand
(

∆c
c

)
1

of the imaging terms clearly
tells that if we have the right velocity, the imaging terms will automatically be zero even without
doing any integration; otherwise, if we do not have the right velocity, these imaging terms would
be used to move the interface closer to the right location from the wrong location. The conclusion
from this equation is that the depth imaging terms depend only on the velocity errors.
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Figure 1: The relationship between qg, kg and θ.
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Figure 2: 1D one-interface acoustic model.

6 Conclusion

In thispresent paper, we derive the first two parameter direct non-linear inversion solution for 1D
acoustic media with a 2D experiment. Numerical tests show that the terms beyond linearity in
earth property identification subseries provide added value. Although the model we used in the
numerical tests is simple, the potential within equations 21 and 22 applies to more complex models
since the inverse scattering series is a direct inversion procedure which inverts data directly without
knowing the specific properties above the target.

As shown above, adding one parameter in the wave equation makes the problem much more com-
plicated in comparison with the one parameter case. Three important concepts (purposeful pertur-
bation, leakage and special parameter for inversion) have been discussed and how they relate to the
linear and non-linear results for parameter estimation, addressing leakage, and imaging. Further
progress on these issues is being carried out with on-going research.

The work presented in thiscurrent paper is an important step forward for imaging without the
velocity model, and target identification for the minimally acceptable elastic isotropic target. In
thispresent paper for the first time the general one-dimensional formalism for a depth varying
acoustic medium is presented for depth imaging and direct parameter estimation, without needing
to determine medium velocity properties that govern actual wave propagation for depth imaging,
or what medium is above a target to be identified. The encouraging numerical results motivated
us to move one step further — extension of this work to the isotropic elastic case (see, e.g., Boyse
and Keller, 1986) using three parameters and elastic wave equation. The companion and sequel
paper to this one provides that extension.

248



Direct non-linear acoustic inversion MOSRP08

Figure 3: α1 (top) and α1 +α2 (bottom) displayed as a function of two different angles. The graphs on the
right are the corresponding contour plots of the graphs on the left. In this example, the exact
value of α is 0.292.
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Figure 6: Linear approximation to relative change in velocity (see details in Appendix A)
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Appendix A

In this appendix, we derive the expressions of
(

∆c
c

)
1
,
(

∆c
c

)
2
,
(

∆I
I

)
1

and
(

∆I
I

)
2

in terms of α1, β1

and α2, β2. Define ∆c = c− c0, ∆I = I − I0, ∆K = K −K0 and ∆ρ = ρ− ρ0.

Since K = c2ρ, then we have

(c−∆c)2 =
K −∆K
ρ−∆ρ

.

Divided by c2, the equation above will become

2
(

∆c
c

)
−
(

∆c
c

)2

=
∆K
K − ∆ρ

ρ

1− ∆ρ
ρ

.

Remember that α = ∆K
K and β = ∆ρ

ρ , the equation above can be rewritten as

2
(

∆c
c

)
−
(

∆c
c

)2

=
α− β

1− β
.

Then we have

2
(

∆c
c

)
−
(

∆c
c

)2

= (α− β)(1 + β + β2 + · · · ), (40)

where the series expansion is valid for |β| < 1.

Similar to equations 17 and 18, ∆c
c can be expanded as(
∆c
c

)
=
(

∆c
c

)
1

+
(

∆c
c

)
2

+ · · · . (41)

Then substitute equations 41, 17 and 18 into equation 40, and set those terms of equal order equal
on both sides of equation 40, we can get(

∆c
c

)
1

=
1
2
(α1 − β1), (42)

and (
∆c
c

)
2

=
1
2

[
1
4
(α1 + β1)2 − β2

1 + (α2 − β2)
]
. (43)

Similarly, using I = cρ, we have

(I −∆I)2 = (K −∆K)(ρ−∆ρ).

Divided by I2, the equation above will become

2
(

∆I
I

)
−
(

∆I
I

)2

= α+ β − αβ. (44)
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Expanding ∆I
I as (
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)
=
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)
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+
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)
2

+ · · · , (45)

and substitute equations 45, 17 and 18 into equation 44, setting those terms of equal order equal
on both sides of equation 44), we can get(
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(α1 + β1), (46)

and (
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)
2

=
1
2

[
1
4
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]
. (47)

Appendix B

In this appendix, we show that
(

∆c
c

)
1

has the same sign as ∆c. For the single interface example,
from equations 36 and 42, we have(

∆c
c

)
1

= 2
R(θ1)−R(θ2)

tan2 θ1 − tan2 θ2
.

The reflection coefficient is

R(θ) =
(ρ1/ρ0)(c1/c0)

√
1− sin2 θ −

√
1− (c21/c

2
0) sin2 θ
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√

1− sin2 θ +
√

1− (c21/c
2
0) sin2 θ

.

Let
A(θ) = (ρ1/ρ0)(c1/c0)

√
1− sin2 θ,

B(θ) =
√

1− (c21/c
2
0) sin2 θ.

Then
R(θ1)−R(θ2) = 2

A(θ1)B(θ2)−B(θ1)A(θ2)
[A(θ1) +B(θ1)] [A(θ2) +B(θ2)]

,

where the denominator is greater than zero. The numerator is

2 [A(θ1)B(θ2)−B(θ1)A(θ2)] =2(ρ1/ρ0)(c1/c0)
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1− sin2 θ1
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2
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2
0) sin2 θ1
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Let
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√
1− sin2 θ1

√
1− (c21/c

2
0) sin2 θ2,

D =
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1− sin2 θ2

√
1− (c21/c

2
0) sin2 θ1.
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Then,

C2 −D2 =
(
c21
c20
− 1
)

(sin2θ1 − sin2θ2).

When c1 > c0 and θ1 > θ2 , we have (Noticing that both C and D are positive.)(
c21
c20
− 1
)

(sin2θ1 − sin2θ2) > 0,

so
R(θ1)−R(θ2) > 0;

Similarly, when c1 < c0 and θ1 > θ2 , we have(
c21
c20
− 1
)

(sin2θ1 − sin2θ2) < 0,

so
R(θ1)−R(θ2) < 0.

Remembering that
(

∆c
c

)
1

= 2 R(θ1)−R(θ2)
tan2 θ1−tan2 θ2

. So for c1 > c0, (∆c)1 > 0 and for c1 < c0, (∆c)1 < 0 .
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Abstract

In this paper, we present the first direct non-linear target identification method and algorithms
for 1D elastic media (that is P velocity, shear velocity and density are depth dependent). Direct
non-linear means that we provide explicit formulas that: (1) input data and directly output
changes in material properties, without the use or need for any indirect procedures such as
model matching, searching, optimization or other assumed aligned objectives or proxies, and
(2) the algorithms recognize and directly invert the intrinsic non-linear relationship between
changes in material properties and changes in the reflected measured wave-field. The results
clearly demonstrate that, in order to achieve full elastic inversion, all four components of data
(D̂PP , D̂PS , D̂SP and D̂SS) are needed. The method assumes that only data and reference
medium properties are input, and terms in the inverse series for moving mislocated reflectors
resulting from the linear inverse term, are separated from amplitude correction terms. Although
in principle this direct inversion approach requires all four components of elastic data, synthetic
tests indicate that a consistent value-added result may be achieved given only D̂PP measure-
ments, as long as the D̂PP were used to approximately synthesize the D̂PS , D̂SP and D̂SS

components. We can reasonably infer that further value would derive from actually measuring
D̂PP , D̂PS , D̂SP and D̂SS as the method requires. For the case that all four components of data
are available, we give one consistent method to solve for all of the second terms (the first terms
beyond linear). The method’s direct and explicit non-linear inversion solution provides for the
very first time -this unambiguous data requirement message, and that unique and prescriptive
clarity, and the explicit non-linear formulas distinguish themselves and provide conceptual and
practical added value beyond both linear approaches and all indirect methods.

1 Introduction

The ultimate objective of inverse problems is to determine medium and target properties from
measurements external to the object under investigation. At the very first moment of problem defi-
nition, there is an immediate requirement and unavoidable expectation, that the model type of the
medium be specified. In that step of model type specification, the number and type of parameters
and dimension of spatial variation of those parameters are given, and carefully prescribed, and in
that way you provide the inverse problem with clarity and meaning. Among the different model
types used in exploration seismology are, e.g., acoustic, elastic, heterogeneous, anisotropic, and
anelastic, and perhaps most important, the dimension of variability of the properties associated
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with these model types. One would reasonably expect that the details of methods and algorithms
for inversion objectives, and any tasks associated with achieving those ultimate objectives, would
overall and each separately depend upon that starting assumption on model type. However, the
ultimate objective of seismic inversion has never been achieved in a straight ahead single step man-
ner directly from the seismic data, and that lack of success has not been due to a lack of computer
power. The indirect model matching procedures have that computer power problem, especially in
the applications to a multi-dimensional complex earth, where it is rare to have a reasonable proxi-
mal starting model. Those complex ill-defined geologic circumstances are the biggest impediments
and challenges to current exploration and production seismic effectiveness.

The only direct multi-dimensional inversion procedure for seismic application, the inverse scattering
series, does not require a proximal starting model and only assumes reference medium information.
Of course, the whole inverse series has very limited application (Carvalho et al., 1992). What makes
the inverse scattering series powerful is the so-called task isolated subseries which is a subset of
the whole series that acts like only one task is performed for that subset (Weglein et al., 2003).
All of these subseries act in a certain sequence so that the total seismic data can be processed
accordingly. The order of processing is : (1) free-surface multiple removal, (2) internal multiple
removal, (3) depth imaging without velocity, and (4) inversion or target identification. Since the
entire process requires only reflection data and reference medium information, it is reasonable to
assume that these intermediate steps, i.e., all of the derived subseries which are associated with
achieving that objective, would also be attainable with only the reference medium and reflection
data and no subsurface medium information is required.

The free surface multiple removal and internal multiple attenuation subseries have been presented by
(Carvalho, 1992; Araújo, 1994; Weglein et al., 1997; Matson, 1997). Those two multiple procedures
are model type independent, i.e., they work for acoustic, elastic and anelastic medium. Taking
internal multiples from attenuation to elimination is being studied (Ramı́rez and Weglein, 2005).
The task specific subseries associated with primaries (i.e., for imaging and inversion) have been
progressed too: (1) imaging without the velocity for one parameter 1D and then 2D acoustic media
(Weglein et al., 2002; Shaw and Weglein, 2003; Shaw et al., 2003a; Shaw et al., 2003b; Shaw et al.,
2004; Shaw and Weglein, 2004; Liu and Weglein, 2003; Liu et al., 2004; Liu et al., 2005), and
(2) direct non-linear inversion for multi-parameter 1D acoustic and then elastic media (Zhang and
Weglein, 2005). Furthermore, recent work (Innanen and Weglein, 2004; Innanen and Weglein, 2005)
suggests that some well-known seismic processing tasks associated with resolution enhancement
(i.e., “Q-compensation”) can be accomplished within the task-separated inverse scattering series
framework. In this paper, we focus on item (2) above.

Compared with model type independent multiple removal procedures, there is a full expectation
that tasks and algorithms associated with primaries will have a closer interest in model type. For
example, there is no way to even imagine that medium property identification can take place without
reference to a specific model type. Tasks and issues associated with structural determination,
without knowing the medium, are also vastly different depending on the dimension of variation
number of velocities that are required for imaging. Hence, a staged approach and isolation of tasks
philosophy is essential in this yet tougher neighborhood, and even more in demand for seeking
insights and then practical algorithms for these more complicated and daunting objectives. We
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adopt the staged and isolation of issues approach for primaries. The isolated task achievement
plan can often spin-off incomplete but useful intermediate objectives. The test and standard is not
necessarily how complete the method is but rather how does it compare to, and improve upon,
current best practice.

The stages within the strategy for primaries are as follows: (1) 1D earth, with one parameter,
velocity as a function of depth, and a normal incidence wave, (2) 1D earth with one parameter
subsurface and offset data, one shot record; (3) 2D earth with one parameter, velocity, varying in
x and z, and a suite of shot records; (4) 1D acoustic earth with two parameters varying, velocity
and density, one propagation velocity, and one shot record of PP data, and (5) 1D elastic earth,
two elastic isotropic parameters and density, and two wave speeds, for P and S waves, and PP, PS,
SP, and SS shot records data collected. This paper takes another step of direct non-linear inversion
methodology, and task isolation and specifically for tasks associated with primaries, to the 1D
elastic case, stage (5). The model is elastic and another paper in acoustic has been presented in
Zhang and Weglein (2005). We take these steps and learn to navigate through this complexity and
steer it towards useful and powerful algorithms.

However, more realism is more complicated with more issues involved. Following the task separation
strategy, we ask the question what kind of tasks should we expect in this more complex, elastic,
setting? In the acoustic case, for example, the acoustic medium only supports P-waves, and hence
only one reference velocity (P-wave velocity) is involved. Therefore, when only one velocity is
incorrect (i.e., poorly estimated), there exists only one “mislocation” for each parameter, and the
imaging terms only need to correct this one mislocation. When we extend our previous work
on the two parameter acoustic case to the present three parameter elastic case, there will be four
mislocations because of the two reference velocities (P wave velocity and S velocity). Our reasoning
is that the elastic medium supports both P- and S-wave propagation, and hence two reference
velocities (P-wave velocity and S-wave velocity) are involved. When both of these velocities are
incorrect, generally, there exist four mislocations due to each of four different combinations1 of the
two wrong velocities. Therefore, in non-linear elastic imaging-inversion, the imaging terms need to
correct the four mislocations arising from linear inversion of any single mechanical property, such
that a single correct location for the corresponding actual change in that property is determined.

In this paper, the first non-linear inversion term for three parameter 1D elastic medium is presented.
It is demonstrated that under the inverse scattering series inversion framework, all four components
of the data are needed in order to perform full elastic inversion. For the case that we don’t have
all four components data and only PP data are available, encouraging inversion results have been
obtained by constructing other components of data from PP data. This means that we could
perform elastic inversion only using pressure measurements, i.e. towed streamer data. For the case
that all four components of data are available, a consistent method is provided. Further tests and
evaluation of the four components of data.

The paper has the following structure: the next section is a brief introduction to the inverse
1The “four combinations” refers to PP, PS, SP and SS, where, for instance, PP means P-wave incidence, and

P-wave reflection. Since P-waves non-normal incidence on an elastic interface can produce S-waves, or vice versa,
which in those cases are known as converted waves (Aki and Richards, 2002), the elastic data generally contain four
components: PP, PS, SP and SS.
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scattering series and then presents, respectively, the derivations and numerical tests for elastic non-
linear inversion when only PP data is available. A full non-linear elastic inversion method is also
provided. Finally we will present some concluding remarks.

2 Background for 2D elastic inversion

In this section we consider the inversion problem in two dimensions for an elastic medium. We
start with the displacement space, and then, for convenience (see e.g., Weglein and Stolt, 1992; Aki
and Richards, 2002), we change the basis and transform the equations to PS space. Finally, we do
the elastic inversion in the PS domain.

2.1 In the displacement space

We begin with some basic equations in the displacement space (Matson, 1997):

Lu = f , (1)

L0u = f , (2)

LG = δ, (3)

L0G0 = δ, (4)

where L and L0 are the differential operators that describe the wave propagation in the actual
and reference medium, respectively, u and f are the corresponding displacement and source terms,
respectively, and G and G0 are the corresponding Green’s operators for the actual and reference
medium. In the following, the quantities with subscript “0” are for the reference medium, and
those without the subscript are for the actual medium.

Following closely Weglein et al. (1997); Weglein et al. (2002) and Weglein et al. (2003), defining
the perturbation V = L0 − L, the Lippmann- Schwinger equation for the elastic media in the
displacement space is

G = G0 +G0V G. (5)

Iterating this equation back into itself generates the Born series

G = G0 +G0V G0 +G0V G0V G0 + · · · . (6)

We define the data D as the measured values of the scattered wave field. Then, on the measurement
surface, we have

D = G0V G0 +G0V G0V G0 + · · · . (7)

Expanding V as a series in orders of D we have

V = V1 + V2 + V3 + · · · . (8)
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Where the subscript “i” in Vi (i=1, 2, 3, ...) denotes the portion of V i-th order in the data.
Substituting equation 8 into equation 7, evaluating equation 7, and setting terms of equal order in
the data equal, the equations that determine V1, V2, . . . from D and G0 would be obtained.

D = G0V1G0, (9)

0 = G0V2G0 +G0V1G0V1G0, (10)

....

In the actual medium, the 2-D elastic wave equation is (Weglein and Stolt, 1992)

Lu ≡
[
ρω2

(
1 0
0 1

)
+
(

∂1γ∂1 + ∂2µ∂2 ∂1(γ − 2µ)∂2 + ∂2µ∂1

∂2(γ − 2µ)∂1 + ∂1µ∂2 ∂2γ∂2 + ∂1µ∂1

)][
u1

u2

]
= f , (11)

where

u =
[
u1

u2

]
= displacement,

ρ = density,

γ = bulk modulus (≡ ρα2 where α = P-wave velocity),

µ = shear modulus (≡ ρβ2 where β = S-wave velocity),

ω = temporal frequency (angular), ∂1 and ∂2 denote the derivative over x and z, respectively, and
f is the source term.

For constant (ρ, γ, µ) = (ρ0, γ0, µ0), (α, β) = (α0, β0), the operator L becomes

L0 ≡
[
ρ0ω

2

(
1 0
0 1

)
+
(
γ0∂

2
1 + µ0∂

2
2 (γ0 − µ0)∂1∂2

(γ0 − µ0)∂1∂2 µ0∂
2
1 + γ0∂

2
2

)]
. (12)

Then,

V ≡L0 − L

=− ρ0

[
aρω

2 + α2
0∂1aγ∂1 + β2

0∂2aµ∂2 ∂1(α2
0aγ − 2β2

0aµ)∂2 + β2
0∂2aµ∂1

∂2(α2
0aγ − 2β2

0aµ)∂1 + β2
0∂1aµ∂2 aρω

2 + α2
0∂2aγ∂2 + β2

0∂1aµ∂1

]
, (13)

where aρ ≡ ρ
ρ0
− 1, aγ ≡ γ

γ0
− 1 and aµ ≡ µ

µ0
− 1 are the three parameters we choose to do the

elastic inversion. For a 1D earth (i.e. aρ, aγ and aµ are only functions of depth z), the expression
above for V becomes

V = −ρ0

[
aρω

2 + α2
0aγ∂

2
1 + β2

0∂2aµ∂2 (α2
0aγ − 2β2

0aµ)∂1∂2 + β2
0∂2aµ∂1

∂2(α2
0aγ − 2β2

0aµ)∂1 + β2
0aµ∂1∂2 aρω

2 + α2
0∂2aγ∂2 + β2

0aµ∂
2
1

]
. (14)
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2.2 Transforming to PS space

For convenience, we can change the basis from u =
[
u1

u2

]
to
(
φP

φS

)
to allow L0 to be diagonal,

Φ =
(
φP

φS

)
=
[
γ0(∂1u1 + ∂2u2)
µ0(∂1u2 − ∂2u1)

]
, (15)

also, we have (
φP

φS

)
= Γ0Πu =

[
γ0(∂1u1 + ∂2u2)
µ0(∂1u2 − ∂2u1)

]
, (16)

where Π =
(
∂1 ∂2

−∂2 ∂1

)
, Γ0 =

(
γ0 0
0 µ0

)
. In the reference medium, the operator L0 will transform

in the new basis via a transformation

L̂0 ≡ ΠL0Π−1Γ−1
0 =

(
L̂P

0 0
0 L̂S

0

)
,

where L̂0 is L0 transformed to PS space, Π−1 =
(
∂1 −∂2

∂2 ∂1

)
∇−2 is the inverse matrix of Π,

L̂P
0 = ω2/α2

0 +∇2, L̂S
0 = ω2/β2

0 +∇2, and

F = Πf =
(
FP

FS

)
. (17)

Then, in PS domain, equation 2 becomes,(
L̂P

0 0
0 L̂S

0

)(
φP

φS

)
=
(
FP

FS

)
. (18)

Since G0 ≡ L−1
0 , let ĜP

0 =
(
L̂P

0

)−1
and ĜS

0 =
(
L̂S

0

)−1
, then the displacement G0 in PS domain

becomes

Ĝ0 = Γ0ΠG0Π−1 =
(
ĜP

0 0
0 ĜS

0

)
. (19)

So, in the reference medium, after transforming from the displacement domain to PS domain, both
L0 and G0 become diagonal.

Multiplying equation 5 from the left by the operator Γ0Π and from the right by the operator Π−1,
and using equation 19,

Γ0ΠGΠ−1 = Ĝ0 + Ĝ0

(
ΠVΠ−1Γ−1

0

)
Γ0ΠGΠ−1

= Ĝ0 + Ĝ0V̂ Ĝ, (20)

where the displacement Green’s operator G is transformed to the PS domain as

Ĝ = Γ0ΠGΠ−1 =
(
ĜPP ĜPS

ĜSP ĜSS

)
. (21)
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The perturbation V in the PS domain becomes

V̂ = ΠVΠ−1Γ−1
0 =

(
V̂ PP V̂ PS

V̂ SP V̂ SS

)
, (22)

where the left superscripts of the matrix elements represent the type of measurement and the right
ones are the source type.

Similarly, applying the PS transformation to the entire inverse series gives

V̂ = V̂1 + V̂2 + V̂3 + · · · . (23)

It follows, from equations 20 and 23 that

D̂ = Ĝ0V̂1Ĝ0, (24)

Ĝ0V̂2Ĝ0 = −Ĝ0V̂1Ĝ0V̂1Ĝ0, (25)
...

where D̂ =
(
D̂PP D̂PS

D̂SP D̂SS

)
are the data in the PS domain.

In the displacement space we have, for equation 1,

u = Gf . (26)

Then, in the PS domain, equation 26 becomes

Φ = ĜF. (27)

On the measurement surface, we have

Ĝ = Ĝ0 + Ĝ0V̂1Ĝ0. (28)

Substituting equation 28 into equation 27, and rewriting equation 27 in matrix form:(
φP

φS

)
=
(
ĜP

0 0
0 ĜS

0

)(
FP

FS

)
+
(
ĜP

0 0
0 ĜS

0

)(
V̂ PP

1 V̂ PS
1

V̂ SP
1 V̂ SS

1

)(
ĜP

0 0
0 ĜS

0

)(
FP

FS

)
. (29)

This can be written as the following two equations

φP = ĜP
0 F

P + ĜP
0 V̂

PP
1 ĜP

0 F
P + ĜP

0 V̂
PS
1 ĜS

0F
S , (30)

φS = ĜS
0F

S + ĜS
0 V̂

SP
1 ĜP

0 F
P + ĜS

0 V̂
SS
1 ĜS

0F
S . (31)

We can see, from the two equations above, that for homogeneous media, (no perturbation, V̂1 = 0),
there are only direct P and S waves and that the two kind of waves are separated. However, for
inhomogeneous media, these two kinds of waves will be mixed together. If only the P wave is
incident, FP = 1, FS = 0, then the two equations 30 and 31 above are respectively reduced to

φP = ĜP
0 + ĜP

0 V̂
PP
1 ĜP

0 , (32)

262



Direct non-linear elastic inversion MOSRP08

φS = ĜS
0 V̂

SP
1 ĜP

0 . (33)

Hence, in this case, there is only the direct P wave ĜP
0 , and no direct wave S. But there are two

kinds of scattered waves: one is the P-to-P wave ĜP
0 V̂

PP
1 ĜP

0 , and the other is the P-to-S wave
ĜS

0 V̂
SP
1 ĜP

0 . For the acoustic case, only the P wave exists, and hence we only have one equation
φP = ĜP

0 + ĜP
0 V̂

PP
1 ĜP

0 .

Similarly, if only the S wave is incident, FP = 0, FS = 1, and the two equations 30 and 31 are,
respectively, reduced to

φP = ĜP
0 V̂

PS
1 ĜS

0 , (34)

φS = ĜS
0 + ĜS

0 V̂
SS
1 ĜS

0 . (35)

In this case, there is only the direct S wave ĜS
0 , and no direct P wave. There are also two kinds of

scattered waves: one is the S-to-P wave ĜP
0 V̂

PS
1 ĜS

0 , the other is the S-to-S wave ĜS
0 V̂

SS
1 ĜS

0 .

3 Linear inversion of a 1D elastic medium

Writing equation 24 in matrix form(
D̂PP D̂PS

D̂SP D̂SS

)
=
(
ĜP

0 0
0 ĜS

0

)(
V̂ PP

1 V̂ PS
1

V̂ SP
1 V̂ SS

1

)(
ĜP

0 0
0 ĜS

0

)
, (36)

leads to four equations
D̂PP = ĜP

0 V̂
PP
1 ĜP

0 , (37)

D̂PS = ĜP
0 V̂

PS
1 ĜS

0 , (38)

D̂SP = ĜS
0 V̂

SP
1 ĜP

0 , (39)

D̂SS = ĜS
0 V̂

SS
1 ĜS

0 . (40)

For zs = zg = 0, in the (ks, zs; kg, zg;ω) domain, we get the following four equations relating the
linear components (the “linear” is denoted by adding a superscript “(1)” on the three parameters)
of the three elastic parameters and the four data types:

D̃PP (kg, 0;−kg, 0;ω) =− 1
4

(
1−

k2
g

ν2
g

)
ã(1)

ρ (−2νg)−
1
4

(
1 +

k2
g

ν2
g

)
ã(1)

γ (−2νg)

+
2k2

gβ
2
0

(ν2
g + k2

g)α2
0

ã(1)
µ (−2νg), (41)

D̃PS(νg, ηg) = −1
4

(
kg

νg
+
kg

ηg

)
ã(1)

ρ (−νg − ηg)−
β2

0

2ω2
kg(νg + ηg)

(
1−

k2
g

νgηg

)
ã(1)

µ (−νg − ηg), (42)

D̃SP (νg, ηg) =
1
4

(
kg

νg
+
kg

ηg

)
ã(1)

ρ (−νg − ηg) +
β2

0

2ω2
kg(νg + ηg)

(
1−

k2
g

νgηg

)
ã(1)

µ (−νg − ηg), (43)
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D̃SS(kg, ηg) = −1
4

(
1−

k2
g

η2
g

)
ã(1)

ρ (−2ηg)−

[
η2

g + k2
g

4η2
g

−
2k2

g

η2
g + k2

g

]
ã(1)

µ (−2ηg), (44)

where

ν2
g + k2

g =
ω2

α2
0

,

η2
g + k2

g =
ω2

β2
0

,

For the P-wave incidence case (see Figure 1), using k2
g/ν

2
g = tan2 θ and k2

g/(ν
2
g +k2

g) = sin2 θ, where
θ is the P-wave incident angle, equation 41 becomes

D̃PP (νg, θ) = −1
4
(1− tan2 θ)ã(1)

ρ (−2νg)−
1
4
(1 + tan2 θ)ã(1)

γ (−2νg) +
2β2

0 sin2 θ

α2
0

ã(1)
µ (−2νg). (45)

In this case, when β0 = β1 = 0, equation 45 reduces to the acoustic two parameter case equation 7
in Zhang and Weglein (2005) for zg = zs = 0.

D̃(qg, θ) = −ρ0

4

[
1

cos2 θ
α̃1(−2qg) + (1− tan2 θ)β̃1(−2qg)

]
, (46)

In equation 45, it seems straightforward that using the data at three angles to obtain the linear
inversion of aρ, aγ and aµ, and this is what we do in this paper. However, by doing this it requires a
whole new understanding of the definition of “the data”. This point has been discussed by Weglein
et al. (2007).

4 Direct non-linear inversion of 1D elastic medium

Writing equation 25 in matrix form:(
ĜP

0 0
0 ĜS

0

)(
V̂ PP

2 V̂ PS
2

V̂ SP
2 V̂ SS

2

)(
ĜP

0 0
0 ĜS

0

)
= −

(
ĜP

0 0
0 ĜS

0

)(
V̂ PP

1 V̂ PS
1

V̂ SP
1 V̂ SS

1

)(
ĜP

0 0
0 ĜS

0

)(
V̂ PP

1 V̂ PS
1

V̂ SP
1 V̂ SS

1

)(
ĜP

0 0
0 ĜS

0

)
, (47)

leads to four equations

ĜP
0 V̂

PP
2 ĜP

0 = −ĜP
0 V̂

PP
1 ĜP

0 V̂
PP
1 ĜP

0 − ĜP
0 V̂

PS
1 ĜS

0 V̂
SP
1 ĜP

0 , (48)

ĜP
0 V̂

PS
2 ĜS

0 = −ĜP
0 V̂

PP
1 ĜP

0 V̂
PS
1 ĜS

0 − ĜP
0 V̂

PS
1 ĜS

0 V̂
SS
1 ĜS

0 , (49)

ĜS
0 V̂

SP
2 ĜP

0 = −ĜS
0 V̂

SP
1 ĜP

0 V̂
PP
1 ĜP

0 − ĜS
0 V̂

SS
1 ĜS

0 V̂
SP
1 ĜP

0 , (50)

ĜS
0 V̂

SS
2 ĜS

0 = −ĜS
0 V̂

SP
1 ĜP

0 V̂
PS
1 ĜS

0 − ĜS
0 V̂

SS
1 ĜS

0 V̂
SS
1 ĜS

0 . (51)
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Since V̂ PP
1 relates to D̂PP , V̂ PS

1 relates to D̂PS , and so on, the four components of the data will be
coupled in the non-linear elastic inversion. We cannot perform the direct non-linear inversion with-
out knowing all components of the data. As shown in Zhang and Weglein (2005) and this chapter,
when the work on the two parameter acoustic case is extended to the present three parameter elas-
tic case, it is not just simply adding one more parameter, but there are more issues involved. Even
for the linear case, the linear solutions found in (41) ∼ (44) are much more complicated than those
of the acoustic case. For instance, four different sets of linear parameter estimates are produced
from each component of the data. Also, generally four distinct reflector mislocations arise from the
two reference velocities (P-wave velocity and S-wave velocity).

However, in some situations like the towed streamer case, we do not have all components of data
available. A particular non-linear approach to be presented in the next section, has been chosen
to side-step a portion of this complexity and address our typical lack of four components of elastic
data: using D̂PP as the fundamental data input, and perform a reduced form of non-linear elastic
inversion, concurrently asking: what beyond-linear value does this simpler framework add? We will
see from the numerical tests presented in the following section.

4.1 Only using D̂PP — a particular non-linear approach and the numerical tests

When assuming only D̂PP are available, first, we compute the linear solution for a(1)
ρ , a(1)

γ and a(1)
µ

from equation 41. Then, substituting the solution into the other three equations (42), (43) and
(44), we synthesize the other components of data — D̂PS , D̂SP and D̂SS . Finally, using the given
D̂PP and the synthesized data, we perform the non-linear elastic inversion, getting the following
second order (first term beyond linear) elastic inversion solution from equation 48,(

1− tan2 θ
)
a(2)

ρ (z) +
(
1 + tan2 θ

)
a(2)

γ (z)− 8b2 sin2 θa(2)
µ (z)

=− 1
2
(
tan4 θ − 1

) [
a(1)

γ (z)
]2

+
tan2 θ

cos2 θ
a(1)

γ (z)a(1)
ρ (z)

+
1
2

[(
1− tan4 θ

)
− 2
C + 1

(
1
C

)(
α2

0

β2
0

− 1
)

tan2 θ

cos2 θ

] [
a(1)

ρ (z)
]2

− 4b2
[
tan2 θ − 2

C + 1

(
1

2C

)(
α2

0

β2
0

− 1
)

tan4 θ

]
a(1)

ρ (z)a(1)
µ (z)

+ 2b4
(

tan2 θ − α2
0

β2
0

)[
2 sin2 θ − 2

C + 1
1
C

(
α2

0

β2
0

− 1
)

tan2 θ

] [
a(1)

µ (z)
]2

− 1
2

(
1

cos4 θ

)
a(1)′

γ (z)
∫ z

0
dz′
[
a(1)

γ

(
z′
)
− a(1)

ρ

(
z′
)]

− 1
2
(
1− tan4 θ

)
a(1)′

ρ (z)
∫ z

0
dz′
[
a(1)

γ

(
z′
)
− a(1)

ρ

(
z′
)]

+ 4b2 tan2 θa(1)′
µ (z)

∫ z

0
dz′
[
a(1)

γ

(
z′
)
− a(1)

ρ

(
z′
)]

+
2

C + 1
1
C

(
α2

0

β2
0

− 1
)

tan2 θ
(
tan2 θ − C

)
b2
∫ z

0
dz′a(1)

µ z

(
(C − 1) z′ + 2z

(C + 1)

)
a(1)

ρ

(
z′
)
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− 2
C + 1

2
C

(
α2

0

β2
0

− 1
)

tan2 θ

(
tan2 θ − α2

0

β2
0

)
b4
∫ z

0
dz′a(1)

µ z

(
(C − 1) z′ + 2z

(C + 1)

)
a(1)

µ

(
z′
)

+
2

C + 1
1
C

(
α2

0

β2
0

− 1
)

tan2 θ
(
tan2 θ + C

)
b2
∫ z

0
dz′a(1)

µ

(
z′
)
a(1)

ρ z

(
(C − 1)z′ + 2z

(C + 1)

)
− 2
C + 1

1
2C

(
α2

0

β2
0

− 1
)

tan2 θ
(
tan2 θ + 1

) ∫ z

0
dz′a(1)

ρ

(
z′
)
a(1)

ρ z

(
(C − 1) z′ + 2z

(C + 1)

)
, (52)

where a(1)
ρ z

(
(C−1)z′+2z

(C+1)

)
= d

[
a

(1)
ρ

(
(C−1)z′+2z

(C+1)

)]
/dz, b = β0

α0
and C = ηg

νg
=
√

1−b2 sin2 θ

b
√

1−sin2 θ
.

The first five terms on the right side of equation 52 are inversion terms; i.e., they contribute to
parameter predictions. The other terms on the right side of the equation are imaging terms. The
arguments for the remarks above are the same as in the acoustic case in (Zhang and Weglein,
2005). For one interface model, there is no imaging task. The only task is inversion. In this case,
all of the integration terms on the right side of equation 52 are zero, and only the first five terms
can be non-zero. Thus, we conclude that the integration terms (which care about duration) are
imaging terms, and the first five terms are inversion terms. Both the inversion and imaging terms
(especially the imaging terms) become much more complicated after the extension of acoustic case
(Zhang and Weglein, 2005) to elastic case. The integrand of the first three integral terms is the
first order approximation of the relative change in P-wave velocity. The derivatives a(1)′

γ , a(1)′
ρ and

a
(1)′
µ in front of those integrals are acting to correct the wrong locations caused by the inaccurate

reference P-wave velocity. The other four terms with integrals willbe zero as β0 → 0 since in this
case C →∞.

In the following, we test this approach numerically.

For a single interface 1D elastic medium case, as shown in Figure 1, the reflection coefficient RPP

has the following form (Foster et al., 1997)

RPP =
N

D
, (53)

where

N =− (1 + 2kx2)2b
√

1− c2x2
√

1− d2x2 − (1− a+ 2kx2)2bcdx2

+ (a− 2kx2)2cd
√

1− x2
√

1− b2x2

+ 4k2x2
√

1− x2
√

1− b2x2
√

1− c2x2
√

1− d2x2 − ad
√

1− b2x2
√

1− c2x2

+ abc
√

1− x2
√

1− d2x2, (54)

D =(1 + 2kx2)2b
√

1− c2x2
√

1− d2x2 + (1− a+ 2kx2)2bcdx2

+ (a− 2kx2)2cd
√

1− x2
√

1− b2x2

+ 4k2x2
√

1− x2
√

1− b2x2
√

1− c2x2
√

1− d2x2 + ad
√

1− b2x2
√

1− c2x2

+ abc
√

1− x2
√

1− d2x2, (55)
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where a = ρ1/ρ0, b = β0/α0, c = α1/α0, d = β1/α0, k = ad2 − b2 and x = sin θ, and the subscripts
“0” and “1” denote the reference medium and actual medium respectively. Similar to the acoustic
case, using the analytic data (Clayton and Stolt, 1981; Weglein et al., 1986)

D̃PP (νg, θ) = RPP (θ)
e2iνga

4πiνg
, (56)

where a is the depth of the interface. Substituting equation 56 into equation 45, Fourier transform-
ing equation 45 over 2νg, and fixing z > a and θ, we have

(1− tan2 θ)a(1)
ρ (z) + (1 + tan2 θ)a(1)

γ (z)− 8
β2

0

α2
0

sin2 θa(1)
µ (z) = 4RPP (θ)H(z − a). (57)

In this section, we numerically test the direct inversion approach on the following four models:

Model 1: shale (0.20 porosity) over oil sand (0.10 porosity). ρ0 = 2.32g/cm3, ρ1 = 2.46g/cm3;
α0 = 2627m/s, α1 = 4423m/s; β0 = 1245m/s, β1 = 2939m/s.

Model 2: shale over oil sand, 0.20 porosity. ρ0 = 2.32g/cm3, ρ1 = 2.27g/cm3; α0 = 2627m/s,
α1 = 3251m/s; β0 = 1245m/s, β1 = 2138m/s.

Model 3: shale (0.20 porosity) over oil sand (0.30 porosity). ρ0 = 2.32g/cm3, ρ1 = 2.08g/cm3;
α0 = 2627m/s, α1 = 2330m/s; β0 = 1245m/s, β1 = 1488m/s.

Model 4: oil sand over wet sand, 0.20 porosity. ρ0 = 2.27g/cm3, ρ1 = 2.32g/cm3; α0 = 3251m/s,
α1 = 3507m/s; β0 = 2138m/s, β1 = 2116m/s.

To test and compare methods, the top of sand reflection was modeled for oil sands with porosities
of 10, 20, and 30%. The three models used the same shale overburden. An oil/water contact model
was also constructed for the 20% porosity sand.

The low porosity model (10%) represents a deep, consolidated reservoir sand. Pore fluids have little
effect on the seismic response of the reservoir sand. It is difficult to distinguish oil sands from brine
sands on the basis of seismic response. Impedance of the sand is higher than impedance of the
shale.

The moderate porosity model (20%) represents deeper, compacted reservoirs. Pore fluids have a
large impact on seismic response, but the fluid effect is less than that of the high porosity case.
The overlying shale has high density compared to the reservoir sand, but the P-wave velocity of
the oil sand exceeds that of the shale. As a result, impedance contrast is reduced, and shear wave
information becomes more important for detecting the reservoir.

The high porosity model (30%) is typical of a weakly consolidated, shallow reservoir sand. Pore
fluids have a large impact on the seismic response. Density, P-wave velocity, and the α/β ratio
of the oil sand are lower than the density, P-wave velocity, and α/β ratio of the overlying shale.
Consequently, there is a significant decrease in density and P-wave bulk modulus and an increase
in shear modulus at the shale/oil sand interface.

The fourth model denotes an oil/water contact in a 20% porosity sand. At a fluid contact, both
density and P-wave velocity increase in going from the oil zone into the wet zone. Because pore
fluids have no affect on shear modulus, there is no change in shear modulus.
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Using these four models, we can find the corresponding RPP from equation 53. Then, choosing
three different angles θ1, θ2 and θ3, we can get the linear solutions for a(1)

ρ , a(1)
γ and a

(1)
µ from

equation 57 , and then get the solutions for a(2)
ρ , a(2)

γ and a(2)
µ from equation 52.

There are two plots in each figure. The left ones are the results for the first order, while the right
ones are the results for the first order plus the second order. The red lines denote the corresponding
actual values. In the figures, we illustrate the results corresponding to different sets of angles θ1
and θ2. The third angle θ3 is fixed at zero.

The numerical results indicate that all the second order solutions provide improvements over the
linear solutions for all of the four models. When the second term is added to linear order, the
results become much closer to the corresponding exact values and the surfaces become flatter in
a larger range of angles. But the degrees of those improvements are different for different models.
How accurately D̂PP effectively synthesize D̂PS and D̂SP (as shown in Figures 14 ∼ 17) determined
the degree of benefit provided by the non-linear elastic approach. All of the “predicted” values in
the figures are predicted using the linear results from D̂PP . And the “actual” values are calculated
from the Zoeppritz’ equations.

In principle, the elastic non-linear direct inversion in 2D requires all four components of data.
However, in this section we introduce an approach which requires only D̂PP and approximately
synthesizes the other required components. Based on this approach, the first direct non-linear
elastic inversion solution is derived. Value-added results are obtained from the non-linear inversion
terms beyond linear. Although D̂PP can itself provide useful non-linear direct inversion results, the
implication of this research is that further value would derive from actually measuring D̂PP , D̂PS ,
D̂SP and D̂SS , as the method requires. In the following section, we give a consistent method and
solve all of the second order equations 48, 49, 50 and 51 with all four components of data available.

4.2 Using all four components of data — full direct non-linear elastic inversion

Using four components of data, one consistent method to solve for the second terms is, first, using
the linear solutions as shown in equations 41, 42, 43 and 44, we can get the linear solution for a(1)

ρ ,
a

(1)
γ and a(1)

µ in terms of D̂PP , D̂PS , D̂SP and D̂SS through the following way

a
(1)
ρ

a
(1)
γ

a
(1)
µ

 = (OTO)−1OT


D̂PP

D̂PS

D̂SP

D̂SS

 , (58)
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where the matrix O is
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
, (59)

and OT is the transpose of matrix O, the superscript −1 denotes the inverse of the matrix OTO.

Let the arguments of a(1)
ρ and a(1)

µ in equations 41, 42, 43 and 44 equal, we need

−2νPP
g = −νPS

g − ηPS
g = −νSP

g − ηSP
g = −2ηSS

g ,

which leads to (please see details in Appendix A)

2
ω

α0
cos θPP =

ω

α0

√
1− α2
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β2
0

sin2 θPS +
ω

β0
cos θPS =

ω
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cos θSP +

ω

β0

√
1− β2

0

α2
0

sin2 θSP

= 2
ω

β0
cos θSS .

From the expression above, given θPP , as shown in Figure 18, we can find the corresponding angles
θPS , θSP and θSS which appear in matrix O

θPS = cos−1

[
4b2 cos2 θPP + 1− b2

4b cos θPP

]
,

θSP = cos−1

[
4b2 cos2 θPP − 1 + b2

4b2 cos θPP

]
,

θSS = cos−1
(
b cos θPP

)
,

where b = β0

α0
.

Then, through the similar way, we can get the solution for a(2)
ρ , a(2)

γ and a
(2)
µ in terms of a(1)

ρ , a(1)
γ

and a(1)
µ a

(2)
ρ

a
(2)
γ

a
(2)
µ

 = (OTO)−1OTQ, (60)

where the matrix Q is in terms of a(1)
ρ , a(1)

γ and a(1)
µ .

Based on this idea, we get the following non-linear solutions for equations 48, 49, 50 and 51
respectively.

269



Direct non-linear elastic inversion MOSRP08

The form of the solution for equation 48, i.e.,
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0 − ĜP
0 V̂
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1 ĜS

0 V̂
SP
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0 ,

is the same as equation 52. In the (ks, zs; kg, zg;ω) domain, we get the the other three solutions
respectively, for equations 49, 50 and 51.

The solution for equation 49, i.e.,
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the solution for equation 50, i.e.,
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1
2C

+
1

C + 1

)
1

4η2
gνg

(
6k3

g − 12k5
g

β2
0

ω2
− kg

ω2

β2
0

+ 8k7
g

β4
0

ω4
+ 8C3ν2

gk
5
g

β4
0

ω4

−4
β2

0

α2
0

C3ν2
gk

3
g

β2
0

ω2

)
−
(

1
2C

− 1
C + 1

)
1

4ηgν2
g

(
4
β2

0

α2
0

k3
g − 8k5

g

β2
0

ω2
− kg

ω2

α2
0

+ 2k3
g − 4Cν2

gk
3
g

β2
0

ω2
+ 8Cν2

gk
5
g

β4
0

ω4

−4
β2

0

α2
0

k5
g

β2
0

ω2
+ 8k7

g

β4
0

ω4

)}
a(1)

µ (z)a(1)
µ (z)

+
[(

1
2

+
1

C + 1

)
kg

8ηgν2
g

(
Ck2

g + ν2
g

)
−
(

1
2
− 1
C + 1

)
kg

8ηgν2
g

(
k2

g + Cν2
g

)
+
(

1
2C

+
1

C + 1

)
kg

8η2
gνg

(
C3ν2

g + k2
g

)
−
(

1
2C

− 1
C + 1

)
kg

8ηgν2
g

(
k2

g + Cν2
g

)]
a(1)

ρ (z)a(1)
ρ (z)

+
[(

1
2

+
1

C + 1

)
β2

0

α2
0

1
4ν3

g

kg

(
k2

g − ν2
g

)
+
(

1
2
− 1
C + 1

)
1

4ηgν2
g

(
kg
ω2

α2
0

− 2
β2

0

α2
0

k3
g

)
+
β2

0

α2
0

kg

2νg

]
a(1)

µ (z)a(1)
γ (z)

−

[(
1
2

+
1

C + 1

)
kg

(
k2

g + ν2
g

)
8ν3

g

−
(

1
2
− 1
C + 1

)
kg

(
k2

g + ν2
g

)
8ηgν2

g

]
a(1)

ρ (z)a(1)
γ (z)
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−
[(

1
2

+
1

C + 1

)
1

4ηgν2
g

(
2ν2

gk
3
g

β2
0

ω2
− ν2

gkg + 2Ck5
g

β2
0

ω2
− β2

0

α2
0

Ck3
g

)
−
(

1
2
− 1
C + 1

)
1

4ηgν2
g

(
2Cν2

gk
3
g

β2
0

ω2
− β2

0

α2
0

Cν2
gkg + 2k5

g

β2
0

ω2
− k3

g

)
−
(

1
2C

+
1

C + 1

)
1

4η2
gνg

(
3k3

g +
β2

0

α2
0

C3ν2
gkg − 4C3ν2

gk
3
g

β2
0

ω2
− 4k5

g

β2
0

ω2
− 1

2
kg
ω2

β2
0

)
+
(

1
2C

− 1
C + 1

)
1

4ηgν2
g

(
Cν2

gkg + 2k3
g +

β2
0

α2
0

k3
g − 4k5

g

β2
0

ω2
− 4Cν2

gk
3
g

β2
0

ω2
− 1

2
kg
ω2

β2
0

)
−(C − 1)

k3
g

2ηg

β2
0

ω2

]
a(1)

ρ (z)a(1)
µ (z)

− 1
2ηgν2

g

[
2(C − 1)ν2

gk
5
g

β4
0

ω4
+
(

1− β2
0

α2
0

C

)
ν2

gk
3
g

β2
0

ω2

]
×
∫ z

0
dz′a(1)

µ z

(
(C + 1)z − (C − 1) z′

2

)
a(1)

µ

(
z′
)

+
1

4η2
gνg

(
6k3

g − 12k5
g

β2
0

ω2
− kg

ω2

β2
0

+ 8k7
g

β4
0

ω4
+ 8C3ν2

gk
5
g

β4
0

ω4
− 4

β2
0

α2
0

C3ν2
gk

3
g

β2
0

ω2

)
×
[

1
2C

∫ z

0
dz′a(1)

µ z

(
(C + 1)z + (C − 1) z′

2C

)
a(1)

µ

(
z′
)

+
1

C + 1
a(1)′

µ (z)
∫ z

0
dz′a(1)

µ (z′)
]

− 1
4ηgν2

g

(
4
β2

0

α2
0

k3
g − 8k5

g

β2
0

ω2
− kg

ω2

α2
0

+ 2k3
g − 4Cν2

gk
3
g

β2
0

ω2
+ 8Cν2

gk
5
g

β4
0

ω4
− 4

β2
0

α2
0

k5
g

β2
0

ω2
+ 8k7

g

β4
0

ω4

)
×
[

1
2C

∫ z

0
dz′a(1)

µ z

(
(C + 1)z + (C − 1) z′

2C

)
a(1)

µ

(
z′
)
− 1
C + 1

a(1)′
µ (z)

∫ z

0
dz′a(1)

µ (z′)
]

+
kg

(
Ck2

g + ν2
g

)
8ηgν2

g

[
1
2

∫ z

0
dz′a(1)

ρ z

(
(C + 1)z − (C − 1) z′

2

)
a(1)

ρ

(
z′
)

+
1

C + 1
a(1)′

ρ (z)
∫ z

0
dz′a(1)

ρ (z′)
]

−
kg

(
k2

g + Cν2
g

)
8ηgν2

g

[
1
2

∫ z

0
dz′a(1)

ρ z

(
(C + 1)z − (C − 1) z′

2

)
a(1)

ρ

(
z′
)

− 1
C + 1

a(1)′
ρ (z)

∫ z

0
dz′a(1)

ρ (z′)
]

+
C3kgν

2
g + k3

g

8η2
gνg

[
1

2C

∫ z

0
dz′a(1)

ρ z

(
(C + 1)z + (C − 1) z′

2C

)
a(1)

ρ

(
z′
)

+
1

C + 1
a(1)′

ρ (z)
∫ z

0
dz′a(1)

ρ (z′)
]

−
kg

(
k2

g + Cν2
g

)
8ηgν2

g

[
1

2C

∫ z

0
dz′a(1)

ρ z

(
(C + 1)z + (C − 1) z′

2C

)
a(1)

ρ

(
z′
)
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− 1
C + 1

a(1)′
ρ (z)

∫ z

0
dz′a(1)

ρ (z′)
]

+
β2

0

α2
0

kg

(
k2

g − ν2
g

)
4ν3

g

[
1
2

∫ z

0
dz′a(1)

γ z

(
(C + 1)z − (C − 1) z′

2

)
a(1)

µ

(
z′
)

+
1

C + 1
a(1)′

µ (z)
∫ z

0
dz′a(1)

γ (z′)
]

+
1

4ηgν2
g

(
kg
ω2

α2
0

− 2
β2

0

α2
0

k3
g

)[
1
2

∫ z

0
dz′a(1)

γ z

(
(C + 1)z − (C − 1) z′

2

)
a(1)

µ

(
z′
)

− 1
C + 1

a(1)′
µ (z)

∫ z

0
dz′a(1)

γ (z′)
]

−
kg

(
k2

g + ν2
g

)
8ν3

g

[
1
2

∫ z

0
dz′a(1)

γ z

(
(C + 1)z − (C − 1) z′

2

)
a(1)

ρ

(
z′
)

+
1

C + 1
a(1)′

ρ (z)
∫ z

0
dz′a(1)

γ (z′)
]

+
kg

(
k2

g + ν2
g

)
8ηgν2

g

[
1
2

∫ z

0
dz′a(1)

γ z

(
(C + 1)z − (C − 1) z′

2

)
a(1)

ρ

(
z′
)

− 1
C + 1

a(1)′
ρ (z)

∫ z

0
dz′a(1)

γ (z′)
]

− 1
4ηgν2

g

(
2ν2

gk
3
g

β2
0

ω2
− ν2

gkg + 2Ck5
g

β2
0

ω2
− β2

0

α2
0

Ck3
g

)
×
[
1
2

∫ z

0
dz′a(1)

ρ z

(
(C + 1)z − (C − 1) z′

2

)
a(1)

µ

(
z′
)

+
1

C + 1
a(1)′

µ (z)
∫ z

0
dz′a(1)

ρ (z′)
]

+
1

4ηgν2
g

(
2Cν2

gk
3
g

β2
0

ω2
− β2

0

α2
0

Cν2
gkg + 2k5

g

β2
0

ω2
− k3

g

)
×
[
1
2

∫ z

0
dz′a(1)

ρ z

(
(C + 1)z − (C − 1) z′

2

)
a(1)

µ

(
z′
)
− 1
C + 1

a(1)′
µ (z)

∫ z

0
dz′a(1)

ρ (z′)
]

+ (C − 1)
k3

g

2ηg

β2
0

ω2

∫ z

0
dz′a(1)
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(
(C + 1)z − (C − 1) z′

2
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a(1)

ρ

(
z′
)

− 1
4η2

gνg

(
−2k3

g + 2C3ν2
gk

3
g

β2
0

ω2
+ 2k5

g

β2
0

ω2
+

1
2
kg
ω2

β2
0

)
×
[

1
2C

∫ z
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dz′a(1)
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(
(C + 1)z + (C − 1) z′

2C

)
a(1)

ρ

(
z′
)

+
1

C + 1
a(1)′

ρ (z)
∫ z

0
dz′a(1)

µ (z′)
]

− 1
4η2
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(
−k3
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0
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0

C3ν2
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3
g
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0

ω2
+ 2k5

g
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0
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)
×
[

1
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∫ z

0
dz′a(1)

ρ z

(
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)
a(1)

µ

(
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)

+
1

C + 1
a(1)′

µ (z)
∫ z
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ρ (z′)
]

− 1
4ηgν2

g

(
2k3
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g
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0
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g

β2
0
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2
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)

275



Direct non-linear elastic inversion MOSRP08

×
[

1
2C

∫ z

0
dz′a(1)

µ z

(
(C + 1)z + (C − 1) z′

2C

)
a(1)

ρ

(
z′
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a(1)′
ρ (z)

∫ z

0
dz′a(1)
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]
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g
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0
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0
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3
g
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0
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[

1
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∫ z
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dz′a(1)

ρ z

(
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2C

)
a(1)

µ

(
z′
)
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C + 1

a(1)′
µ (z)

∫ z

0
dz′a(1)

ρ (z′)
]
,

and the solution for equation 51, i.e.,

ĜS
0 V̂

SS
2 ĜS

0 = −ĜS
0 V̂

SP
1 ĜP

0 V̂
PS
1 ĜS

0 − ĜS
0 V̂

SS
1 ĜS

0 V̂
SS
1 ĜS

0 ,

is

− 1
4

(
1−

k2
g

η2
g

)
a(2)

ρ (z)−

[
k2

g + η2
g

4η2
g

−
2k2

g

k2
g + η2

g

]
a(2)

µ (z)

=−
{

1
8η4

g

(
8k2

gη
2
g −

ω4

β4
0

)
− 1

4η2
g

(
ω2

β2
0

− 4
β2

0

ω2
η2

gk
2
g

)
− β2

0

α2
0

k2
g

β2
0

ω2

+
1

η2
g(C + 1)

[
k2

g

(
β4

0

α4
0

C2 − 1
)
− 4k4

g

β2
0

ω2

(
β2

0

α2
0

C2 − 1
)

+ 4k6
g

β4
0

ω4
(C2 − 1)

]}
a(1)

µ (z)a(1)
µ (z)

−
[

1
8η4

g

(
η4

g − k4
g

)
+

1
4η2

g

k2
g(C − 1)

]
a(1)

ρ (z)a(1)
ρ (z)

+
{
k2

g

η2
g

− 1
η2

g(C + 1)

[
k2

g

(
β2

0

α2
0

C2 − 1
)
− 2

β2
0

ω2
k4

g

(
C2 − 1

)]}
a(1)

µ (z)a(1)
ρ (z)

− 1
8η4

g

(
8k2

gη
2
g −

ω4

β4
0

)
a(1)′

µ (z)
∫ z

0
dz′a(1)

µ (z′)

− 1
8η4

g

(
η4

g − k4
g

)
a(1)′

ρ (z)
∫ z
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ρ (z′)

+
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g

2η2
g

[
a(1)′

µ (z)
∫ z

0
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ρ (z′) + a(1)′
ρ (z)

∫ z

0
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µ (z′)
]
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8η2

g

(
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g
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µ (z)
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0
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ρ (z)

∫ z

0
dz′a(1)

µ (z′)
]

− 1
η2

g(C + 1)

[
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g

(
β4

0

α4
0
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)
− 4k4

g

β2
0

ω2

(
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0

C2 − 1
)

+ 4k6
g
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0

ω4
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]
×
∫ z
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(
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)
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µ

(
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)
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4η2

g

k2
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∫ z
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(
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ρ

(
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[
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g

(
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0
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0
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0
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(
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(
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)
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ρ

(
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µ
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+
Ck2

g

2(C + 1)η2
g

(
β2

0

α2
0

− 1
)

×
[∫ z

0
dz′a(1)

µ z

(
2Cz − (C − 1) z′

(C + 1)

)
a(1)

ρ

(
z′
)
−
∫ z

0
dz′a(1)

ρ z

(
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µ

(
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)]
,

where ηg = Cνg, k
2
g + ν2

g = ω2/α2
0 and k2

g + η2
g = ω2/β2

0 .

After we solve all (four) of the second order equations, future research is to perform numerical tests
with all four components of data available.

5 Conclusion

In this paper, a framework and algorithm have been developed for more accurate target identi-
fication. The elastic non-linear inversion requires all four components of data. In this paper we
analyzed an algorithm which inputs only D̂PP . Although D̂PP can itself provide useful non-linear
direct inversion results, when we use D̂PP to synthesize the other components, the implication of
this research is that further value would derive from actually measuring D̂PP , D̂PS , D̂SP and D̂SS ,
as the method requires. Pitfalls of indirect methods that use assumed aligned objectives, while
sounding eminently persuasive and reasonable, can have a serious flaw in violating the fundamental
physics behind non-linear inversion, and can never sense its problem, in any clear and definitive
manner. There are very serious conceptual and practical consequences to that disconnect. For the
case that all four components of data available, we also provided a consistent method to solve for
all of the second terms. Further tests with the actual four components of data (in a 2-D world) are
underway, to compare with D̂PP and synthesized data components.
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Appendix A

In this Appendix, we give the different coefficients before every linear quantity (a(1)
γ , a

(1)
ρ , a

(1)
µ ) —

different incidence angle θ. For P to P case, we have

kPP
g =

ω

α0
sin θPP ,

νPP
g =

ω

α0
cos θPP ,

For S to P case,

kPS
g =

ω

β0
sin θPS ,
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νPS
g =

ω

α0

√
1− α2

0

β2
0

sin2 θPS

ηPS
g =

ω

β0
cos θPS ,

For P to S case,

kSP
g =

ω

α0
sin θSP ,

νSP
g =

ω

α0
cos θSP

ηSP
g =

ω

β0

√
1− β2

0

α2
0

sin2 θSP ,

For S to S case,

kSS
g =

ω

β0
sin θSS ,

ηSS
g =

ω

β0
cos θSS ,

Let the arguments of a(1)
ρ and a(1)

µ in equations 41, 42, 43 and 44 equal, we need

−2νPP
g = −νPS

g − ηPS
g = −νSP

g − ηSP
g = −2ηSS

g ,

which leads to

2
ω

α0
cos θPP =

ω

α0

√
1− α2

0

β2
0

sin2 θPS +
ω

β0
cos θPS

=
ω

α0
cos θSP +

ω

β0

√
1− β2

0

α2
0

sin2 θSP = 2
ω

β0
cos θSS ,

From the expression above, given θPP , we can find the corresponding θPS , θSP and θSS .

θPS = cos−1

[
4b2 cos2 θPP + 1− b2

4b cos θPP

]
,

θSP = cos−1

[
4b2 cos2 θPP − 1 + b2

4b2 cos θPP

]
,

θSS = cos−1
(
b cos θPP

)
,

where b = β0

α0
.
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111 ,,

000 ,,

PP
T

PP
R

SP
R

SP
T

Incident P-wave

Figure 1: Response of incident compressional wave on a planar elastic interface. α0, β0 and ρ0 are the
compressional wave velocity, shear wave velocity and density of the upper layer, respectively; α1,
β1 and ρ1 denote the compressional wave velocity, shear wave velocity and density of the lower
layer. RPP , RSP , TPP and TSP denote the coefficients of the reflected compressional wave,
the reflected shear wave, the transmitted compressional wave and the transmitted shear wave,
respectively. (Foster et al., 1997)
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Figure 2: Model 1: shale (0.20 porosity) over oil sand (0.10 porosity). ρ0 = 2.32g/cm3, ρ1 =
2.46g/cm3;α0 = 2627m/s, α1 = 4423m/s;β0 = 1245m/s, β1 = 2939m/s. For this model, the
exact value of aρ is 0.06. The linear approximation a

(1)
ρ (left) and the sum of linear and first

non-linear a(1)
ρ + a

(2)
ρ (right).

Figure 3: Model 1: shale (0.20 porosity) over oil sand (0.10 porosity). ρ0 = 2.32g/cm3, ρ1 =
2.46g/cm3;α0 = 2627m/s, α1 = 4423m/s;β0 = 1245m/s, β1 = 2939m/s. For this model, the
exact value of aγ is 2.01. The linear approximation a

(1)
γ (left) and the sum of linear and first

non-linear a(1)
γ + a

(2)
γ (right).
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Figure 4: Model 1: shale (0.20 porosity) over oil sand (0.10 porosity). ρ0 = 2.32g/cm3, ρ1 =
2.46g/cm3;α0 = 2627m/s, α1 = 4423m/s;β0 = 1245m/s, β1 = 2939m/s. For this model, the
exact value of aµ is 4.91. The linear approximation a

(1)
µ (left) and the sum of linear and first

non-linear a(1)
µ + a

(2)
µ (right).

Figure 5: Model 2: shale over oil sand, 0.20 porosity. ρ0 = 2.32g/cm3, ρ1 = 2.27g/cm3;α0 = 2627m/s, α1 =
3251m/s;β0 = 1245m/s, β1 = 2138m/s. For this model, the exact value of aρ is -0.022. The linear
approximation a(1)

ρ (left) and the sum of linear and first non-linear a(1)
ρ + a

(2)
ρ (right).
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Figure 6: Model 2: shale over oil sand, 0.20 porosity. ρ0 = 2.32g/cm3, ρ1 = 2.27g/cm3;α0 = 2627m/s, α1 =
3251m/s;β0 = 1245m/s, β1 = 2138m/s. For this model, the exact value of aγ is 0.498. The linear
approximation a(1)

γ (left) and the sum of linear and first non-linear a(1)
γ + a

(2)
γ (right).

Figure 7: Model 2: shale over oil sand, 0.20 porosity. ρ0 = 2.32g/cm3, ρ1 = 2.27g/cm3;α0 = 2627m/s, α1 =
3251m/s;β0 = 1245m/s, β1 = 2138m/s. For this model, the exact value of aµ is 1.89. The linear
approximation a(1)

µ (left) and the sum of linear and first non-linear a(1)
µ + a

(2)
µ (right).
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Figure 8: Model 3: shale (0.20 porosity) over oil sand (0.30 porosity). ρ0 = 2.32g/cm3, ρ1 =
2.08g/cm3;α0 = 2627m/s, α1 = 2330m/s;β0 = 1245m/s, β1 = 1488m/s. For this model, the
exact value of aρ is -0.103. The linear approximation a

(1)
ρ (left) and the sum of linear and first

non-linear a(1)
ρ + a

(2)
ρ (right).

Figure 9: Model 3: shale (0.20 porosity) over oil sand (0.30 porosity). ρ0 = 2.32g/cm3, ρ1 =
2.08g/cm3;α0 = 2627m/s, α1 = 2330m/s;β0 = 1245m/s, β1 = 1488m/s. For this model, the
exact value of aγ is -0.295. The linear approximation a

(1)
γ (left) and the sum of linear and first

non-linear a(1)
γ + a

(2)
γ (right).
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Figure 10: Model 3: shale (0.20 porosity) over oil sand (0.30 porosity). ρ0 = 2.32g/cm3, ρ1 =
2.08g/cm3;α0 = 2627m/s, α1 = 2330m/s;β0 = 1245m/s, β1 = 1488m/s. For this model, the
exact value of aµ is 0.281. The linear approximation a

(1)
µ (left) and the sum of linear and first

non-linear a(1)
µ + a

(2)
µ (right).

Figure 11: Model 4: oil sand over wet sand, 0.20 porosity. ρ0 = 2.27g/cm3, ρ1 = 2.32g/cm3;α0 =
3251m/s, α1 = 3507m/s;β0 = 2138m/s, β1 = 2116m/s. For this model, the exact value of
aρ is 0.022. The linear approximation a

(1)
ρ (left) and the sum of linear and first non-linear

a
(1)
ρ + a

(2)
ρ (right).
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Figure 12: Model 4: oil sand over wet sand, 0.20 porosity. ρ0 = 2.27g/cm3, ρ1 = 2.32g/cm3;α0 =
3251m/s, α1 = 3507m/s;β0 = 2138m/s, β1 = 2116m/s. For this model, the exact value of
aγ is 0.19. The linear approximation a

(1)
γ (left) and the sum of linear and first non-linear

a
(1)
γ + a

(2)
γ (right).

Figure 13: Model 4: oil sand over wet sand, 0.20 porosity. ρ0 = 2.27g/cm3, ρ1 = 2.32g/cm3;α0 =
3251m/s, α1 = 3507m/s;β0 = 2138m/s, β1 = 2116m/s. For this model, the exact value of
aµ is 0.001. The linear approximation a

(1)
µ (left) and the sum of linear and first non-linear

a
(1)
µ + a

(2)
µ (right).
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Figure 14: The comparison between the synthesized values and the actual values of Rsp (top) and Rps
(bottom) for Model 1: shale (0.20 porosity) over oil sand (0.10 porosity). ρ0 = 2.32g/cm3, ρ1 =
2.46g/cm3;α0 = 2627m/s, α1 = 4423m/s;β0 = 1245m/s, β1 = 2939m/s.
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Figure 15: The comparison between the synthesized values and the actual values of Rsp (top) and Rps
(bottom) for Model 2: shale over oil sand, 0.20 porosity. ρ0 = 2.32g/cm3, ρ1 = 2.27g/cm3;α0 =
2627m/s, α1 = 3251m/s;β0 = 1245m/s, β1 = 2138m/s.
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Figure 16: The comparison between the synthesized values and the actual values of Rsp (top) and Rps
(bottom) for Model 3: shale (0.20 porosity) over oil sand (0.30 porosity). ρ0 = 2.32g/cm3, ρ1 =
2.08g/cm3;α0 = 2627m/s, α1 = 2330m/s;β0 = 1245m/s, β1 = 1488m/s.
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Figure 17: The comparison between the synthesized values and the actual values of Rsp (top) and Rps (bot-
tom) for Model 4: oil sand over wet sand, 0.20 porosity. ρ0 = 2.27g/cm3, ρ1 = 2.32g/cm3;α0 =
3251m/s, α1 = 3507m/s;β0 = 2138m/s, β1 = 2116m/s.
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Figure 18: Different incident angles.
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